-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathresponsenet.py
409 lines (327 loc) · 12.9 KB
/
responsenet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
# The beginning of the rewrite of responsenet
from ortools.linear_solver import pywraplp
import argparse
import networkx as nx
import math
import warnings
# Global Variables that args can modify
_verbose = False
_include_st = False
_output_log = False
def parse_nodes(node_file):
"""
Parse a list of sources or targets and return a set
Parameters:
@node_file : PATH()
the PATH file for a list of nodes
Returns:
@nodes: set of all nodes listed in file
"""
with open(node_file) as node_f:
lines = node_f.readlines()
nodes = set(map(str.strip, lines))
return nodes
def construct_digraph(edges_file, default_capacity= 1):
"""
Similar to MinCostFlow, we need to parse a list of undirected edges and
returns a graph object
Parameters:
@edges_file : PATH()
the PATH file for an interactome
Returns:
@G: graph object
"""
## Make a directed graph object.
G = nx.DiGraph()
# Go through edge_file, assign each node an id
with open(edges_file) as edges_f:
for line in edges_f:
tokens = line.strip().split()
node1 = tokens[0]
if not node1 in G:
G.add_node(node1)
node2 = tokens[1]
if not node2 in G:
G.add_node(node2)
w = float(tokens[2])
# From the paper: truncate scores to be between 0 and 0.7.
# Because high edge weights could indicate unusually well-studied proteins or imperfectness
# of the assumption of conditional independence, all weights were capped to a maximum value of 0.7"
if w > 0.7:
w = 0.7
# zero-weight or negative edges will cause a problem.
if w <= 0.0:
warnings.warn(f"Edge {tokens[0]} --> {tokens[1]} has weight <= 0, this will cause problems")
## AR change "cost" to "weight" so it accurately reflects the value.
G.add_edge(node1,
node2,
cost = w,
cap = default_capacity)
return G
def add_sources_and_targets(G, sources, targets):
"""
Add a false source and target node to the DiGraph, helpful
for organization and essential to the ILP
Parameters:
@G : nx.DiGraph()
DiGraph object
@sources : set()
set of all source nodes
@targets : set()
set of all target nodes
Returns:
@G : modified DiGraph object with faux source and target
"""
# Divide the capacity evently across the sources and targets
source_weight = 1/len(sources)
target_weight = 1/len(targets)
source_cap = source_weight
target_cap = target_weight
G.add_node("source")
G.add_node("target")
for source in sources:
if _verbose:
print(source)
if source in G:
if _verbose:
print("source found")
G.add_edge("source",
source,
cost = source_weight,
cap = source_cap)
else:
if _verbose:
print(f"Source: {source} not found in graph")
for target in targets:
if _verbose:
print(target)
if target in G:
if _verbose:
print("target found")
G.add_edge(target,
"target",
cost = target_weight,
cap = target_cap)
else:
if _verbose:
print(f"Target: {target} not found in graph")
return G
def prepare_variables(solver, G):
"""
This section systematically creates variables for the ILP and saves them
both in a dictionary and as an attribute for each edge in G
Parameters:
@solver : pywraplp.Solver()
solver object that the LP depends on
@G : nx.DiGraph()
graph object of interactome
Returns:
@flows: dictionary of all variables in the solver
"""
flows = dict()
extras = 0
for i,j in G.edges():
edge = (i,j)
if edge not in flows:
# Need to set max value for each edge to be the max capacity of given edge
flows[edge] = solver.NumVar(0.0, G[i][j]["cap"], f"Flows{edge}")
G.get_edge_data(edge[0],edge[1])["flow"] = flows[edge]
else:
if _verbose:
print("repeat")
print(edge)
extras += 1
if _verbose:
print(f"We had {extras} repeat edges")
# Helpful debugging statement for LP solver
# print_solver(solver)
return flows
def prepare_constraints(solver, G):
"""
This section systematically applies constraints on each node and all edges
to make sure that any flow entering a node also exits a node
Parameters:
@solver : pywraplp.Solver()
solver object that LP depends on
@G : nx.DiGraph()
graph object of interactome
@idDict : dict()
dictionary of all nodes in network
Returns:
@constraints: list object containing all constraints in the LP
"""
constraints = []
for i, node in enumerate(G.nodes):
in_edges = list(G.in_edges(node))
out_edges = list(G.out_edges(node))
if node == "source" or node == "target":
continue
# Creating constraint for each node, constraint has bounds 0,0
# and is named after the node
curr_constraint = solver.Constraint(0.0, 0.0, node)
constraints.append(curr_constraint)
G.nodes[node]["constraint"] = curr_constraint
for u,v in in_edges:
assert v == node
constraints[i].SetCoefficient(G[u][v]["flow"],1)
for u,v in out_edges:
assert u == node
constraints[i].SetCoefficient(G[u][v]["flow"],-1)
# Adding a final constraint to make sure all flows going from the source
# and to the target are equivalent
constraints.append(solver.Constraint(0.0, 0.0, "source"))
for j,k in list(G.out_edges("source")):
constraints[-1].SetCoefficient(G[j][k]["flow"],1)
for j,k in list(G.in_edges("target")):
constraints[-1].SetCoefficient(G[j][k]["flow"],-1)
# Helpful debugging statement for LP
# print_solver(solver)
return constraints
def prepare_objective(solver, G, flows, gamma):
"""
This segment goes through all edges in the graph and sets a coefficient on each variable in the LP
Parameters:
@solver : pywraplp.Solver()
solver object that LP depends on
@G : nx.DiGraph()
graph object of interactome
@flows : dict()
dictionary of all flow variables for the solver
@gamma : int()
user defined value that determines graph size
Returns:
@objective : solver objective with all constraints
"""
objective = solver.Objective()
for i,j in G.edges():
log_weight = (math.log(G[i][j]["cost"])) * (-1)
if i == "source":
log_weight = log_weight - gamma
if _verbose:
print("adjusting for source")
objective.SetCoefficient(flows[i,j], log_weight)
objective.SetMinimization()
# Helpful debugging statement to show status of LP solver
# print_solver(solver)
return objective
def print_solver(solver):
"""
Helper function to print contents of solver (constraints, variables, objective) for debugging
"""
print('**'*25)
print(solver.ExportModelAsLpFormat(False).replace('\\', '').replace(',_', ','), sep='\n')
print('**'*25)
## AR make this return the solver, for testing.
def responsenet(G, gamma, out_file, out_log):
"""
The NEW ILP solver for ResponseNet, using GLOP.
Parameters:
@G : nx.DiGraph()
graph object of interactome
@gamma : int()
user defined integer determining size of output graph
@out_file : PATH()
PATH to the output file for writing the LP solution
Returns:
Nothing
"""
solver = pywraplp.Solver.CreateSolver("GLOP")
if not solver:
return
# Data structures that define the ILP, kept for your debugging pleasure
flows = prepare_variables(solver, G)
constraints = prepare_constraints(solver, G)
objective = prepare_objective(solver, G, flows, gamma)
print("Attempting solve of flows...")
status = solver.Solve()
if status == pywraplp.Solver.OPTIMAL:
print("Solved! \n")
else:
print("The problem does not have an optimal solution.")
return
write_output_to_tsv(G, solver, out_file, out_log)
return solver
def write_output_to_tsv(G, solver, out_file, out_log):
'''
Write output of solver.Solve() over graph obj to an output file specified
by out_file
Params:
@G : graph object
@solver : pywraplp.Solver() object, contains the answer to the LP
@out_file : str of output file name/path
@out_log : str of output log file name/path
'''
with open(out_file, "w") as output_f:
print(f"Objective value = {solver.Objective().Value():0.1f}")
print(f"Solved in {(float(solver.wall_time())/1000)} seconds")
output_f.write("Interactor 1" + '\t' + "Interactor 2" + '\t' + "Flow" + "\n")
for u,v in G.edges:
# Check to see if we want to actually include the artificial source and target
if (u == "source" or v == "target") and not _include_st:
continue
else:
if G[u][v]["flow"].solution_value() > 0.0 and G[u][v]["flow"].solution_value() <= 1.0:
output_f.write(str(u)+"\t"+str(v)+"\t"+str(G[u][v]["flow"].solution_value())+"\n")
# Format for output log, including the entire solver information
if _output_log:
with open(out_log, "w") as out_l:
out_l.write("Objective value = " + str(solver.Objective().Value()) +'\n')
out_l.write("Solved in " + str(float(solver.wall_time())/1000) + " seconds"+'\n\n')
out_l.write("Solver:\n")
out_l.write(str(solver.ExportModelAsLpFormat(False).replace('\\', '').replace(',_', ',')))
return
def main(args):
print("Running ResponseNet...")
sources = parse_nodes(args.sources_file)
targets = parse_nodes(args.targets_file)
# Modifying global variables based on args
global _verbose
global _include_st
global _output_log
_verbose = args.verbose
_include_st = args.include_st
_output_log = args.output_log
gamma = args.gamma
G = construct_digraph(args.edges_file)
G = add_sources_and_targets(G, sources, targets)
# AR make this a TXT file. Keep the same formatting. Should we have headers
out_file = args.output+"_gamma"+str(gamma)+".txt"
out_log = args.output +"_gamma"+str(gamma) + ".log"
responsenet(G, gamma, out_file, out_log)
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description=__doc__,
formatter_class=argparse.RawDescriptionHelpFormatter)
parser.add_argument('--edges_file',
help='Network file. File should be in SIF file format.',
type=str,
required=True)
parser.add_argument('--sources_file',
help='File which denotes source nodes, with one node per line.',
type=str,
required=True)
parser.add_argument('--targets_file',
help='File which denotes source nodes, with one node per line.',
type=str,
required=True)
parser.add_argument('--output',
help='Prefix for all output files.',
type=str,
required=True)
parser.add_argument('--gamma',
help='The size of the output graph. Default = 10.',
type=int,
required=False,
default=10)
parser.add_argument('-st','--include_st',
help='Determines whether output should include artificial Source and Target nodes. By default does not include them.',
action='store_true')
parser.add_argument('-v','--verbose',
help='Include verbose console output',
action='store_true')
parser.add_argument('-o', '--output_log',
help='Create output log',
action='store_true')
args = parser.parse_args()
print(args)
main(args)