-
Notifications
You must be signed in to change notification settings - Fork 0
/
batchTraverse.py
326 lines (278 loc) · 10.3 KB
/
batchTraverse.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
import collections
import contextlib
from energyRatioByVAD import getEnergyRatio
from os import curdir, path
import sys
import wave
from matplotlib.pyplot import bar_label
from numpy import compare_chararrays, true_divide
import webrtcvad
def read_wave(path):
"""Reads a .wav file.
Takes the path, and returns (PCM audio data, sample rate).
"""
with contextlib.closing(wave.open(path, 'rb')) as raw:
num_channels=raw.getnchannels()
if(num_channels>1):
import subprocess
import os
newPath="单声道音频/tmp.wav"
cmd='ffmpeg -y -i %s -ar %s -ac 1 %s' %(path,16000,newPath) #16000是我设定的采样率
os.system(cmd.encode('utf-8').decode('utf-8'))
subprocess.call(cmd,shell=True)
path=newPath
with contextlib.closing(wave.open(path, 'rb')) as wf:
num_channels = wf.getnchannels()
assert num_channels == 1
sample_width = wf.getsampwidth()
assert sample_width == 2
sample_rate = wf.getframerate()
assert sample_rate in (8000, 16000, 32000, 48000)
pcm_data = wf.readframes(wf.getnframes())
return pcm_data, sample_rate
def write_wave(path, audio, sample_rate):
"""Writes a .wav file.
Takes path, PCM audio data, and sample rate.
"""
with contextlib.closing(wave.open(path, 'wb')) as wf:
wf.setnchannels(1)
wf.setsampwidth(2)
wf.setframerate(sample_rate)
wf.writeframes(audio)
class Frame(object):
"""Represents a "frame" of audio data."""
def __init__(self, bytes, timestamp, duration):
self.bytes = bytes
self.timestamp = timestamp
self.duration = duration
def frame_generator(frame_duration_ms, audio, sample_rate):
"""Generates audio frames from PCM audio data.
Takes the desired frame duration in milliseconds, the PCM data, and
the sample rate.
Yields Frames of the requested duration.
"""
n = int(sample_rate * (frame_duration_ms / 1000.0) * 2)
offset = 0
timestamp = 0.0
duration = (float(n) / sample_rate) / 2.0
while offset + n < len(audio):
yield Frame(audio[offset:offset + n], timestamp, duration)
timestamp += duration
offset += n
def vad_collector(sample_rate, frame_duration_ms,
padding_duration_ms, vad, frames,carrier):
"""Filters out non-voiced audio frames.
Given a webrtcvad.Vad and a source of audio frames, yields only
the voiced audio.
Uses a padded, sliding window algorithm over the audio frames.
When more than 90% of the frames in the window are voiced (as
reported by the VAD), the collector triggers and begins yielding
audio frames. Then the collector waits until 90% of the frames in
the window are unvoiced to detrigger.
The window is padded at the front and back to provide a small
amount of silence or the beginnings/endings of speech around the
voiced frames.
Arguments:
sample_rate - The audio sample rate, in Hz.
frame_duration_ms - The frame duration in milliseconds.
padding_duration_ms - The amount to pad the window, in milliseconds.
vad - An instance of webrtcvad.Vad.
frames - a source of audio frames (sequence or generator).
Returns: A generator that yields PCM audio data.
"""
num_padding_frames = int(padding_duration_ms / frame_duration_ms)
# We use a deque for our sliding window/ring buffer.
ring_buffer = collections.deque(maxlen=num_padding_frames)
# We have two states: TRIGGERED and NOTTRIGGERED. We start in the
# NOTTRIGGERED state.
triggered = False
voiced_frames = []
print(len(frames)) #有20052个10ms 时长3:20
timeSpan=0.0
for frame in frames:
is_speech = vad.is_speech(frame.bytes, sample_rate)
sys.stdout.write('1' if is_speech else '0')
timeSpan+=0.01
#currentResult=[('%.2f'%timeSpan), is_speech,]
carrier.append([('%.2f'%timeSpan), is_speech,])
if not triggered:
ring_buffer.append((frame, is_speech))
num_voiced = len([f for f, speech in ring_buffer if speech])
# If we're NOTTRIGGERED and more than 90% of the frames in
# the ring buffer are voiced frames, then enter the
# TRIGGERED state.
if num_voiced > 0.9 * ring_buffer.maxlen:
#计算num_voiced/ring_buffer.maxlen > 0.9 则设定为有人声!
triggered = True
sys.stdout.write('+(%s)' % (ring_buffer[0][0].timestamp,))
# We want to yield all the audio we see from now until
# we are NOTTRIGGERED, but we have to start with the
# audio that's already in the ring buffer.
for f, s in ring_buffer:
voiced_frames.append(f)
ring_buffer.clear()
else:
# We're in the TRIGGERED state, so collect the audio data
# and add it to the ring buffer.
voiced_frames.append(frame)
ring_buffer.append((frame, is_speech))
num_unvoiced = len([f for f, speech in ring_buffer if not speech])
# If more than 90% of the frames in the ring buffer are
# unvoiced, then enter NOTTRIGGERED and yield whatever
# audio we've collected.
if num_unvoiced > 0.9 * ring_buffer.maxlen:
sys.stdout.write('-(%s)' % (frame.timestamp + frame.duration))
triggered = False
yield b''.join([f.bytes for f in voiced_frames])
ring_buffer.clear()
voiced_frames = []
if triggered:
sys.stdout.write('-(%s)' % (frame.timestamp + frame.duration))
sys.stdout.write('\n')
# If we have any leftover voiced audio when we run out of input,
# yield it.
if voiced_frames:
yield b''.join([f.bytes for f in voiced_frames])
def testSingleSong(path,recorder,songName):
audio, sample_rate = read_wave(path)
vad = webrtcvad.Vad(3)
span=10
frames = frame_generator(span, audio, sample_rate)
frames = list(frames)
#carrier保存了时间节点、概率
carrier=[]
segments = vad_collector(sample_rate, span, span*5, vad, frames,carrier)
for i, segment in enumerate(segments):
pass
'''
path = 'chunk-%002d.wav' % (i,)
print(' Writing %s' % (path,))
write_wave(path, segment, sample_rate)
'''
'''
for x in carrier:
print(x[0],x[1])
'''
#将下划线全部替换为空格,得到真实歌名formalName
formalName=list(songName)
maxpos=len(songName)-1
i=0
while(i<=maxpos):
if(formalName[i]=='_'):
formalName[i]=' '
if(formalName[i]=='%'):
formalName[i]='&'
i+=1
tmpstr=""
for x in formalName:
tmpstr+=x
formalName=tmpstr
#1、先将carrier复制到finalCarrier
finalCarrier=[]
for timeP in carrier:
if(timeP[1]==True):
timeP[1]=1
else:
timeP[1]=0
duplicate=[]
for x in timeP:
duplicate.append(x)
duplicate[1]=4
finalCarrier.append(duplicate)
#仅用于测试
print("修正前")
for x in carrier:
print(x[1],end='')
#2、为了解决保证连续性,只需考虑周围4个元素是否一致
#若一致,则直接同化carrier[i]
i=0
maxpos=len(carrier)-1
while(i<=maxpos):
flag=True
k=i-4
commonValue=None
if(i-1>=0):
commonValue=carrier[i-1][1]
else:
commonValue=carrier[i+1][1]
while(k<=i+4 and flag):
if((not k==i)and k>=0 and k<=maxpos and carrier[k][1]!=commonValue):
flag=False
k+=1
if(flag==True):
#则finalcarrier[i]被周围同化,并且i-4 i+4全部被同化
k=i-4
while(k<=i+4):
if(k>=0 and k<=maxpos):
finalCarrier[k][1]=commonValue
carrier[k][1]=commonValue
k+=1
if(flag==False):
#如果1之间的0的个数较少,则将0全部翻转为1
left=i-1
while(left>0 and left>=i-4):
if(carrier[left][1]==1):break
left-=1
right=i+1
while(right<=maxpos and right<=i+4):
if(carrier[right][1]==1):break
right+=1
if(left>0 and left>=i-4 and right<=maxpos and right<=i+4):
if(right-left<=6):
k=left
while(k<=right):
carrier[k][1]=1
finalCarrier[k][1]=1
k+=1
i+=1
energyArr=getEnergyRatio(path)
#最后一步:将4填充为0.9 0.8……
i=0
for x in finalCarrier:
if(x[1]>1):
#用能量比例代替
pos=i
if(pos>len(energyArr)-1):
pos=len(energyArr)-1
x[1]=energyArr[pos]
i+=1
print("分割线-------------分割线")
for x in finalCarrier:
if(x[1]>1):
print("出问题了")
tmp=input()
elif(x[1]>0 and x[1]<1):
print("6",end='')
else:
print(x[1],end='')
if(len(carrier)==len(finalCarrier)):
print("两者等长")
print("长度为",len(finalCarrier))
else:
print("出问题了")
#开始写入文件
import csv
carrier=finalCarrier
csvWriter=csv.writer(recorder)
for timePerhaps in carrier:
line=[formalName,]
for i in timePerhaps:
line.append(i)
csvWriter.writerow(line)
def main():
#testSingleSong('cleanSample/VOCALS1/Georgia_Wonder_-_Siren/vocals.wav')
import csv
recorder=open('resultForTest3.csv','w',encoding='utf-8',newline="")
import os
vocalGroup=os.listdir('cleanSample')
import energyRatioByVAD
for vocalx in vocalGroup:
if os.path.isdir('cleanSample/'+vocalx):
songGroup=os.listdir('cleanSample/'+vocalx)
for singleSong in songGroup:
path='cleanSample'+'/'+vocalx+'/'+singleSong+'/'+'vocals.wav'
print('歌名:',path)
testSingleSong(path,recorder,singleSong)
recorder.close()
if __name__ == '__main__':
main()