forked from frazerlin/fcanet
-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathcore.py
136 lines (125 loc) · 6.11 KB
/
core.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
import cv2
import torch
import numpy as np
from scipy.ndimage.morphology import distance_transform_edt
from model.fcanet import FCANet
########################################[ Encapsulation ]########################################
def get_points_mask(size, points):
mask=np.zeros(size[::-1]).astype(np.uint8)
if len(points)!=0:
points=np.array(points)
mask[points[:,1], points[:,0]]=1
return mask
def structural_integrity_strategy(pred, pos_mask):
pos_mask=((pos_mask==1)&(pred==1)).astype(np.uint8)
h,w=pred.shape
mask=np.zeros([h+2, w+2], np.uint8)
pred_new=pred.copy()
pts_y, pts_x = np.where(pos_mask==1)
pts_xy=np.concatenate((pts_x[:,np.newaxis], pts_y[:,np.newaxis]), axis=1)
for pt in pts_xy:
cv2.floodFill(pred_new, mask, tuple(pt),2)
pred_new=(pred_new==2).astype(np.uint8)
return pred_new
def img_resize_point(img, size):
(h, w) = img.shape
if not isinstance(size, tuple): size=( int(w*size), int(h*size) )
M=np.array([[size[0]/w,0,0],[0,size[1]/h,0]])
pts_y, pts_x= np.where(img==1)
pts_xy=np.concatenate( (pts_x[:,np.newaxis], pts_y[:,np.newaxis]), axis=1 )
pts_xy_new= np.dot( np.insert(pts_xy,2,1,axis=1), M.T).astype(np.int64)
img_new=np.zeros(size[::-1],dtype=np.uint8)
for pt in pts_xy_new:
img_new[pt[1], pt[0]]=1
return img_new
class Resize(object):
def __init__(self, size, mode=None, elems_point=['pos_points_mask','neg_points_mask','first_point_mask'], elems_do=None, elems_undo=[]):
self.size, self.mode = size, mode
self.elems_point = elems_point
self.elems_do, self.elems_undo = elems_do, (['meta']+elems_undo)
def __call__(self, sample):
for elem in sample.keys():
if self.elems_do!= None and elem not in self.elems_do :continue
if elem in self.elems_undo:continue
if elem in self.elems_point:
sample[elem]=img_resize_point(sample[elem],self.size)
continue
if self.mode is None:
mode = cv2.INTER_LINEAR if len(sample[elem].shape)==3 else cv2.INTER_NEAREST
sample[elem] = cv2.resize(sample[elem], self.size, interpolation=mode)
return sample
class CatPointMask(object):
def __init__(self, mode='NO', paras={}, if_repair=True):
self.mode,self.paras,self.if_repair = mode, paras, if_repair
def __call__(self, sample):
gt = sample['gt']
if_gt_empty= not ((gt>127).any())
pos_points_mask, neg_points_mask = sample['pos_points_mask'], sample['neg_points_mask']
if self.mode == 'DISTANCE_POINT_MASK_SRC':
max_dist=255
if if_gt_empty:
pos_points_mask_dist = np.ones(gt.shape).astype(np.float64)*max_dist
else:
pos_points_mask_dist = distance_transform_edt(1-pos_points_mask)
pos_points_mask_dist = np.minimum(pos_points_mask_dist, max_dist)
if neg_points_mask.any()==False:
neg_points_mask_dist = np.ones(gt.shape).astype(np.float64)*max_dist
else:
neg_points_mask_dist = distance_transform_edt(1-neg_points_mask)
neg_points_mask_dist = np.minimum(neg_points_mask_dist, max_dist)
pos_points_mask_dist, neg_points_mask_dist = pos_points_mask_dist*255, neg_points_mask_dist*255
sample['pos_mask_dist_src'] = pos_points_mask_dist
sample['neg_mask_dist_src'] = neg_points_mask_dist
return sample
class ToTensor(object):
def __init__(self, if_div=True, elems_do=None, elems_undo=[]):
self.if_div = if_div
self.elems_do, self.elems_undo = elems_do, (['meta']+elems_undo)
def __call__(self, sample):
for elem in sample.keys():
if self.elems_do!= None and elem not in self.elems_do :continue
if elem in self.elems_undo:continue
tmp = sample[elem]
tmp = tmp[np.newaxis,:,:] if tmp.ndim == 2 else tmp.transpose((2, 0, 1))
tmp = torch.from_numpy(tmp).float()
tmp = tmp.float().div(255) if self.if_div else tmp
sample[elem] = tmp
return sample
########################################[ Interface ]########################################
def init_model(model_name='fcanet',backbone='resnet',pretrained_file=None, if_cuda=True):
print('Backbone is {}'.format(backbone))
if model_name=='fcanet':
model=FCANet(backbone=backbone)
if if_cuda: model = model.cuda()
model.eval()
if pretrained_file is not None:
if if_cuda:
state_dict=torch.load(pretrained_file)
else:
state_dict=torch.load(pretrained_file,map_location=lambda storage, loc: storage)
model.load_state_dict(state_dict)
print('load from [{}]!'.format(pretrained_file))
return model
def predict(model,img, seq_points, if_sis=False, if_cuda=True):
h,w,_ =img.shape
sample={}
sample['img']=img.copy()
sample['gt']=(np.ones((h,w))*255).astype(np.uint8)
sample['pos_points_mask'] = get_points_mask((w,h),seq_points[seq_points[:,2]==1,:2])
sample['neg_points_mask'] = get_points_mask((w,h),seq_points[seq_points[:,2]==0,:2])
sample['first_point_mask'] = get_points_mask((w,h),seq_points[0:1,:2])
Resize((int(w*512/min(h, w)),int(h*512/min(h, w))))(sample)
CatPointMask(mode='DISTANCE_POINT_MASK_SRC', if_repair=False)(sample)
sample['pos_mask_dist_first'] = np.minimum(distance_transform_edt(1-sample['first_point_mask']), 255.0)*255.0
ToTensor()(sample)
input=[sample['img'].unsqueeze(0), sample['pos_mask_dist_src'].unsqueeze(0), sample['neg_mask_dist_src'].unsqueeze(0), sample['pos_mask_dist_first'].unsqueeze(0)]
if if_cuda:
for i in range(len(input)):
input[i]=input[i].cuda()
with torch.no_grad():
output = model(input)
result = torch.sigmoid(output.data.cpu()).numpy()[0,0,:,:]
result = cv2.resize(result, (w,h), interpolation=cv2.INTER_LINEAR)
pred = (result>0.5).astype(np.uint8)
if if_sis: pred=structural_integrity_strategy(pred,get_points_mask((w,h),seq_points[seq_points[:,2]==1,:2]))
return pred