-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathgenerate_texture.py
356 lines (288 loc) · 17.2 KB
/
generate_texture.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
import os
import time
import sys
project_path = os.path.dirname(os.path.realpath(__file__))
sys.path.insert(0, project_path)
threestudio_path = os.path.join(project_path, "extern/threestudio")
sys.path.insert(0, threestudio_path)
from argparse import ArgumentParser
import pathlib
import tempfile
import shutil
from tqdm import tqdm
import numpy as np
import torch
import torch.nn.functional as F
import torchvision
from PIL import Image
import json
from concurrent.futures import ThreadPoolExecutor
from pytorch3d.structures import Meshes
from pytorch3d.renderer import (
look_at_view_transform,
FoVPerspectiveCameras,
TexturesUV,
)
from mesh.util import (
load_mesh,
write_obj_with_texture
)
from dataset.mesh_dataset import MeshDataset
from models.avatar_image_generator import (
AvatarImageGenerator,
to_character_sheet,
from_character_sheet
)
from optimization.optimizer3d import Optimizer3D
from optimization.setup_geometry3d import setup_geometry3d
from utils.write_video import (
write_360_video_diffrast,
render_with_rotate_light
)
import threestudio
from threestudio.models.renderers.nvdiff_rasterizer import NVDiffRasterizer
from threestudio.models.materials.no_material import NoMaterial
from threestudio.models.materials.pbr_material import PBRMaterial
from threestudio.models.background.solid_color_background import SolidColorBackground
def parse_args(arglist=None):
expand_path = lambda p: pathlib.Path(p).expanduser().absolute() if p is not None else None
parser = ArgumentParser(description='FlashTex')
parser.add_argument('--input_mesh',
type=expand_path,
help='Path to input mesh')
parser.add_argument('--output', dest='output_dir',
type=expand_path,
default='./output', help='Path to output directory')
parser.add_argument('--production', action='store_true', help='Run in production mode, skipping debug outputs')
parser.add_argument('--model_id', type=str, default='Lykon/DreamShaper', help='Diffusers model to use for generation')
parser.add_argument('--controlnet_name', type=str, default='', help='ControlNet model to use for generation')
parser.add_argument('--pretrained_dir', type=str, help='Directory containing pretrained weights for models')
parser.add_argument('--distilled_encoder', type=str, default='load/encoder_resnet4.pth', help='Disilled encoder checkpoint')
parser.add_argument('--image_resolution', type=int, default=512, help='Image resolution')
parser.add_argument('--num_sds_iterations', type=int, default=400, help='Number of iterations for SDS optimization')
parser.add_argument('--rotation_x', type=float, default=0.0, help='Mesh rotation about the X axis')
parser.add_argument('--rotation_y', type=float, default=0.0, help='Mesh rotation about the Y axis')
parser.add_argument('--gif_resolution', type=int, default=512, help='Resolution of spin-around gif')
parser.add_argument('--refine', action='store_true', help='Refine original mesh texture')
parser.add_argument('--bbox_size', type=float, default=-1, help='Size of a mesh bbox enclosing mesh avatar/object')
parser.add_argument('--texture_tile_size', type=int, default=1024, help='Size each texture tile in UV space')
parser.add_argument('--uv_unwrap', action='store_true', help='Perform uv unwrapping')
parser.add_argument('--uv_rescale', action='store_true', help='Perform uv rescaling')
# Arguments for generating the reference image
parser.add_argument('--disable_img2img', action='store_true', help='Do not use img2img for the character sheet')
parser.add_argument('--ddim_steps', type=int, default=20, help='DDIM steps')
parser.add_argument('--seed', type=int, default=0, help='Seed')
parser.add_argument('--img2img_strength', type=float, default=1.0, help='Strength for img2img for the character sheet')
parser.add_argument('--character_sheet_noise', type=float, default=0.0, help='Character sheet noise scale')
parser.add_argument('--strength', type=float, default=0.8, help='Strength')
parser.add_argument('--scale', type=float, default=9.0, help='Scale')
parser.add_argument('--eta', type=float, default=0.0, help='Eta')
parser.add_argument('--camera_dist', type=float, default=5.0, help='Camera distance')
parser.add_argument('--camera_fov', type=float, default=30.0, help='Camera FOV')
parser.add_argument('--walkaround_y', type=float, default=0.0, help='Walkaround camera Y')
parser.add_argument('--skip_character_sheet', action='store_true', help='Set to skip character sheet for multiview consistency')
parser.add_argument('--prompt_masking', dest='prompt_masking_style', type=str, default='global', help='global | front_back | front_back_localized')
parser.add_argument('--prompt', type=str, default='a mouse pirate, detailed, hd', help='Text prompt for stable diffusion')
parser.add_argument('--additional_prompt', dest="a_prompt", type=str, default="", help='Additional text prompt for stable diffusion')
parser.add_argument('--negative_prompt', dest="n_prompt", type=str, default="bad quality, blurred, low resolution, low quality, low res", help='Negative text prompt for stable diffusion')
parser.add_argument('--device', type=str, default="cuda", help='Device to use (cpu or cuda), defaults to cuda when available.')
parser.add_argument('--guidance_scale', type=float, default=50.0, help='Guidance Scale')
parser.add_argument('--cond_strength', type=float, default=1.0, help='Condtioning Strength for ControlNet')
parser.add_argument('--guidance_sds', type=str, default="SDS_sd", help='Choose from [SDS_sd, SDS_LightControlNet]')
parser.add_argument('--no_tqdm', action='store_true', help='No tqdm logging')
parser.add_argument('--SDS_camera_dist', type=float, default=5.0)
parser.add_argument('--pbr_material', action='store_true', help='Use PBR Material.')
parser.add_argument('--lambda_recon_reg', type=float, default=1000.0, help='Reconstruction regularization')
parser.add_argument('--lambda_albedo_smooth', type=float, default=0.0, help='Albedo smoothness regularization')
args = parser.parse_args(args=arglist)
return args
def view_angle_to_prompt(elev, azim):
azim = azim % 360
if abs(azim - 180.0) < 90.0:
return 'rear view'
elif abs(azim) < 30.0 or abs(azim - 360) < 30:
return 'front view'
else:
return 'side view'
def args_to_json(args):
args = vars(args)
for key in args.keys():
value = args[key]
if isinstance(value, pathlib.Path):
value = str(value.absolute())
args[key] = value
return json.dumps(args, indent=2)
def get_view_params(mode='character_sheet', num_views=2):
if mode == 'character_sheet':
if num_views == 2:
elev = torch.tensor([0.0, 0.0])
azim = torch.tensor([0.0, 180.0])
light_dirs = [
[0.0, 0.0, 1.0],
[0.0, 0.0, -1.0],
]
elif num_views == 4:
elev = torch.tensor([0.0, 0.0, 15.0, 15.0])
azim = torch.tensor([0.0, 180.0, -75.0, 75.0])
light_dirs = [
[0.0, 0.0, 1.0],
[0.0, 0.0, -1.0],
[-1.0, 0.0, 0.0],
[1.0, 0.0, 0.0],
]
else:
raise NotImplementedError(f'Unsupported number of views {num_views}')
else:
raise NotImplementedError(f'Unsupported view mode {mode}')
return elev, azim, light_dirs
def setup(args):
os.makedirs(args.output_dir, exist_ok=True)
if not args.production:
with open(f'{args.output_dir}/config.json', 'w') as file:
file.write(args_to_json(args))
return args
def get_mesh_dict_and_view_strings(args, use_textures=False):
mesh_dataset = MeshDataset(input_mesh=args.input_mesh,
device=args.device,
head_only=False,
texture_tile_size=args.texture_tile_size,
bbox_size=args.bbox_size,
rotation_x=args.rotation_x,
rotation_y=args.rotation_y,
uv_unwrap=args.uv_unwrap,
uv_rescale=args.uv_rescale,
use_existing_textures=use_textures)
elev, azim, light_dirs = get_view_params(num_views=4)
mesh_dict = mesh_dataset.render_images(image_resolution=args.image_resolution,
dist=torch.tensor(args.camera_dist),
elev=elev,
azim=azim,
fov=torch.tensor(args.camera_fov),
light_dirs=light_dirs,
use_textures=use_textures)
view_strings = [view_angle_to_prompt(elev[i], azim[i]) for i in range(mesh_dict['mesh_images'].size(0))]
if not args.production:
torchvision.utils.save_image(mesh_dict['mesh_images'], f'{args.output_dir}/projected_mesh.png', padding=0)
return mesh_dict, view_strings
def generate_avatar_image(args, mesh_dict, view_strings, use_view_prompt, prompt_masking_style, is_character_sheet,
input_images, output_name:str=""):
output_image_name = f'{args.output_dir}/{output_name}'
avatar_image_generator = AvatarImageGenerator(args, preloaded_models=None, device=args.device)
generated_outputs = avatar_image_generator(
mesh_dict,
view_strings=view_strings,
use_view_prompt=use_view_prompt,
prompt_masking_style=prompt_masking_style,
input_images=input_images,
is_character_sheet=is_character_sheet,
img2img_strength=args.img2img_strength,
)
output_images = generated_outputs['images']
if not args.production and not output_name == "":
torchvision.utils.save_image(output_images, output_image_name, padding=0)
return output_images, generated_outputs.get('diffusion_noise_init', None)
def interpolate_image(image0, image1, t):
return (image0 * t) + (image1 * (1.0 - t))
#
# Generate character sheet with multiple views of the mesh in one image.
# This helps encourage multiview consistency.
#
def generate_initial_character_sheet(args, mesh_dict, view_strings):
# Add character_sheet_noise
if args.character_sheet_noise > 0.0:
noise_mask = (mesh_dict['mesh_depths'] > 0.05).float()
input_noise = (torch.randn_like(mesh_dict['mesh_images']) * noise_mask) * args.character_sheet_noise
mesh_dict['mesh_images'] = torch.clamp(interpolate_image(mesh_dict['mesh_images'], input_noise, 1.0 - args.character_sheet_noise), 0.0, 1.0)
return generate_avatar_image(
args=args,
mesh_dict=mesh_dict,
view_strings=view_strings,
use_view_prompt=args.skip_character_sheet,
prompt_masking_style=args.prompt_masking_style,
is_character_sheet=not args.skip_character_sheet,
input_images=mesh_dict['mesh_images'],
output_name='depth2image.png',
)
def setup_renderers(tsdf, use_pbr=False, bg_color=(0.0, 0.0, 0.0), device='cuda', bg_random_p=0.5):
# PBR or albedo only
material = PBRMaterial({
"min_albedo": 0.03,
"max_albedo": 0.8,
}).to(device) if use_pbr else NoMaterial({}).to(device)
# Setup renderer for optimization and testing
bg = SolidColorBackground(dict(color=bg_color, random_aug=False, hls_color=True, s_range=(0.0, 0.01), random_aug_prob=bg_random_p)).to(device)
bg_test = SolidColorBackground(dict(color=bg_color)).to(device)
optimization_renderer = NVDiffRasterizer({"context_type": "cuda"}, geometry=tsdf, background=bg, material=material)
test_renderer = NVDiffRasterizer({"context_type": "cuda"}, geometry=tsdf, background=bg_test, material=material)
return dict(optimization=optimization_renderer, testing=test_renderer)
def direct_optimization_nvdiffrast(args, mesh_dict, target_images, target_masks, progress_callback=None):
textured_mesh = mesh_dict['mesh']
# writing temporary mesh
output_mesh_basename = 'output_mesh.obj'
output_texture_basename = 'tex_combined.png'
tmp_mesh_dir = tempfile.mkdtemp(prefix='tmp_mesh_')
tmp_mesh_filename = os.path.join(tmp_mesh_dir, output_mesh_basename)
print('tmp_mesh_filename', tmp_mesh_filename)
write_obj_with_texture(tmp_mesh_filename, output_texture_basename, textured_mesh)
iter_num = args.num_sds_iterations
guidance = args.guidance_sds
implicit3d = setup_geometry3d(mesh_file=tmp_mesh_filename, geometry='custom_mesh', centering='none', scaling='none', material='pbr' if args.pbr_material else 'no_material')
# Setup optimization and testing renderers for implicit representations
renderers = setup_renderers(implicit3d, use_pbr=args.pbr_material, bg_random_p=1.0)
optimization_output_dir = os.path.join(args.output_dir, 'optimization')
os.makedirs(optimization_output_dir, exist_ok=True)
optimizer3d = Optimizer3D(tsdf=implicit3d, renderers=renderers,
model_name=args.model_id,
controlnet_name=args.controlnet_name,
output_dir=optimization_output_dir,
distilled_encoder=args.distilled_encoder,
lambda_recon_reg=args.lambda_recon_reg,
lambda_albedo_smooth=args.lambda_albedo_smooth,
grad_clip=0.1,
save_img=0 if args.production else 100,
save_video=0 if args.production else 1000,
fix_geometry=True,
pretrained_dir=args.pretrained_dir,
guidance=guidance,
guidance_scale=args.guidance_scale,
cond_strength=args.cond_strength,
no_tqdm=args.no_tqdm,
camera_dist=args.SDS_camera_dist)
implicit3d = optimizer3d.optimize_with_prompts(prompt=args.prompt,
negative_prompt=args.n_prompt,
num_iters=iter_num,
textured_mesh=textured_mesh,
fixed_target_images=target_images,
fixed_target_masks=F.interpolate(target_masks, size=(512, 512), mode='bilinear'),
fixed_target_azim=mesh_dict['azim'],
fixed_target_elev=mesh_dict['elev'],
progress_callback=progress_callback)
if not args.production:
write_360_video_diffrast(renderers['testing'], output_filename=f"{optimization_output_dir}/{guidance}_final_rgb.gif")
render_with_rotate_light(renderers['optimization'], output_filename=f"{optimization_output_dir}/{guidance}_final_rgb_rotate.gif")
write_360_video_diffrast(renderers['testing'], output_filename=f"{optimization_output_dir}/{guidance}_final_rgb_up.gif", elev=-30)
shutil.copyfile(f'{optimization_output_dir}/{guidance}_final_rgb.gif', f'{args.output_dir}/video360.gif')
optimizer3d.export_mesh(optimization_output_dir, textured_mesh.textures.verts_uvs_padded().squeeze(0), textured_mesh.textures.faces_uvs_padded().squeeze(0))
shutil.copyfile(f'{optimization_output_dir}/texture_kd.png', f'{args.output_dir}/texture_kd.png')
shutil.copyfile(f'{optimization_output_dir}/output_mesh.mtl', f'{args.output_dir}/output_mesh.mtl')
shutil.copyfile(f'{optimization_output_dir}/output_mesh.obj', f'{args.output_dir}/output_mesh.obj')
if args.pbr_material:
shutil.copyfile(f'{optimization_output_dir}/texture_metallic.png', f'{args.output_dir}/texture_metallic.png')
shutil.copyfile(f'{optimization_output_dir}/texture_roughness.png', f'{args.output_dir}/texture_roughness.png')
shutil.copyfile(f'{optimization_output_dir}/texture_nrm.png', f'{args.output_dir}/texture_nrm.png')
def main(args, progress_callback=None):
args = setup(args)
mesh_dict, view_strings = get_mesh_dict_and_view_strings(args, use_textures=args.refine)
if args.guidance_sds == 'SDS_sd':
output_images, diffusion_noise_init = generate_initial_character_sheet(args, mesh_dict, view_strings)
output_images = F.interpolate(output_images, size=(512, 512), mode='bilinear')
torchvision.utils.save_image(output_images[0:1], f'{args.output_dir}/depth2image_front.png', padding=0)
else:
output_images = None
if progress_callback is not None:
direct_optimization_nvdiffrast(args, mesh_dict, output_images, mesh_dict['mesh_masks'], progress_callback=progress_callback)
if __name__ == '__main__':
args = parse_args()
def progress_callback(image):
torchvision.utils.save_image(image, f"{args.output_dir}/progress.png", padding=0)
main(args, progress_callback=progress_callback)