-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
130 lines (104 loc) · 5.1 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
# Copyright 2019-present NAVER Corp.
# CC BY-NC-SA 3.0
# Available only for non-commercial use
# Modified for RoBLo feature extraction
import os, pdb
import torch
import torch.optim as optim
from tools import common, trainer
from tools.robotic_burst_dataloader import *
from nets.patchnet import *
from nets.losses import *
from torch.utils.tensorboard import SummaryWriter
default_net = "Fast_Quad_L2Net_ConfCFS(inchan=15)" # For a burst of 5 RGB images, 5 x 3 => 15
# For training using toy dataset
#toy_db_debug = """SyntheticPairDataset(ImgFolder('imgs'),
# 'RandomScale(256,1024,can_upscale=True)',
# 'RandomTilting(0.01), PixelNoise(0)')"""
# Aachen dataset images
db_aachen_images = """SyntheticPairDataset(
aachen_db_images,
'RandomScale(256,1024,can_upscale=True)',
'RandomTilting(0.01), PixelNoise(0)')"""
# Random web images
db_web_images = """SyntheticPairDataset(
web_images,
'RandomScale(256,1024,can_upscale=True)',
'RandomTilting(0.01), PixelNoise(0)')"""
# Calling all training datasets
data_sources = dict(
#T = toy_db_debug,
W = db_web_images,
A = db_aachen_images,
)
default_dataloader = """PairLoader(CatPairDataset(`data`),
scale = 'RandomScale(256,1024,can_upscale=True)',
crop = 'RandomCrop(192)')"""
default_sampler = """NghSampler2(ngh=7, subq=-8, subd=1, pos_d=3, neg_d=5, border=16,
subd_neg=-8,maxpool_pos=True)"""
default_loss = """MultiLoss(
1, ReliabilityLoss(`sampler`, base=0.5, nq=20),
1, CosimLoss(N=`N`),
1, PeakyLoss(N=`N`))"""
class MyTrainer(trainer.Trainer):
""" This class implements the network training.
"""
def forward_backward(self, inputs):
output = self.net(imgs=[inputs.pop('img1'),inputs.pop('img2')])
allvars = dict(inputs, **output)
loss, details = self.loss_func(**allvars)
if torch.is_grad_enabled(): loss.backward()
return loss, details
def log_run(writer, loss, epoch):
for key in loss:
writer.add_scalar(key, loss[key], epoch + 1)
if __name__ == '__main__':
import argparse
parser = argparse.ArgumentParser("Train RoBLo")
parser.add_argument("--data-loader", type=str, default=default_dataloader)
parser.add_argument("--train-data", type=str, default=list('WA'), nargs='+', choices = set(data_sources.keys()))
parser.add_argument("--net", type=str, default=default_net, help='network architecture')
parser.add_argument("--pretrained", type=str, default="", help='pretrained model path')
parser.add_argument("--save-path", type=str, required=True, help='model save_path path')
parser.add_argument("--loss", type=str, default=default_loss, help="loss function")
parser.add_argument("--sampler", type=str, default=default_sampler, help="AP sampler")
parser.add_argument("--N", type=int, default=16, help="patch size for repeatability")
parser.add_argument("--epochs", type=int, default=25, help='number of training epochs')
parser.add_argument("--batch-size", "--bs", type=int, default=2, help="batch size")
parser.add_argument("--learning-rate", "--lr", type=str, default=1e-4)
parser.add_argument("--weight-decay", "--wd", type=float, default=5e-4)
parser.add_argument("--threads", type=int, default=8, help='number of worker threads')
parser.add_argument("--gpu", type=int, nargs='+', default=[0], help='-1 for CPU')
args = parser.parse_args()
iscuda = common.torch_set_gpu(args.gpu)
common.mkdir_for(args.save_path)
from datasets import *
db = [data_sources[key] for key in args.train_data]
db = eval(args.data_loader.replace('`data`',','.join(db)).replace('\n',''))
print("Training image database =", db)
loader = threaded_loader(db, iscuda, args.threads, args.batch_size, shuffle=True)
print("\n>> Creating net = " + args.net)
net = eval(args.net)
print(f" ( Model size: {common.model_size(net)/1000:.0f}K parameters )")
if args.pretrained:
checkpoint = torch.load(args.pretrained, lambda a,b:a)
net.load_pretrained(checkpoint['state_dict'])
loss = args.loss.replace('`sampler`',args.sampler).replace('`N`',str(args.N))
print("\n>> Creating loss = " + loss)
loss = eval(loss.replace('\n',''))
optimizer = optim.Adam( [p for p in net.parameters() if p.requires_grad],
lr=args.learning_rate, weight_decay=args.weight_decay)
tb_dir = os.path.join(args.save_path, "tensorboard")
common.mkdir_for(tb_dir)
writer = SummaryWriter(tb_dir)
train = MyTrainer(net, loader, loss, optimizer, writer)
if iscuda: train = train.cuda()
for epoch in range(args.epochs):
print(f"\n>> Starting epoch {epoch}...")
loss = train()
writer.add_scalar('loss', loss, epoch + 1)
model_name = f"{args.save_path[:-4]}_{epoch}.pt"
print(f"\n>> Saving model to {model_name}")
torch.save({'net': args.net, 'state_dict': net.state_dict()}, model_name)
print(f"\n>> Saving model to {args.save_path}")
torch.save({'net': args.net, 'state_dict': net.state_dict()}, os.path.join(args.save_path, 'RoBLo_N16_B5.pt'))