-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfacepicker.py
103 lines (67 loc) · 3.21 KB
/
facepicker.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
import io
import os
from google.cloud import vision
from matplotlib import pyplot as plt
from matplotlib import patches as pch
os.environ["GOOGLE_APPLICATION_CREDENTIALS"]="/Users/roger/Documents/GitHub/Finding-Maldo/key.json"
#insert path variable to API key here.
client = vision.ImageAnnotatorClient()
from PIL import Image
import random
# path variable to full image
crowd_image = Image.open('/Users/roger/Documents/GitHub/Finding-Maldo/mask_test.png')
im_w, im_h = crowd_image.width, crowd_image.height
print("src crowd photo w: {}, h: {}".format(im_w, im_h))
def crop_image(src_height, src_width):
# max y-axis variation
max_hfactor_val = im_h - src_height
# max x-axis variation
max_wfactor_val = im_w - src_width
# get random shift in y-axis, x-axis rounded to nearest integer
randh = int(max_hfactor_val*random.random())
randw = int(max_wfactor_val*random.random())
print("new lower bound on image w: {}, h: {}".format(randh, randw))
# box = (x0, y0, x1, y1) -> x0 = left boundary y0 = up boundary ...
x0 = randw
y0 = randh
x1 = randw + src_width
y1 = randh + src_height
print("cropping dimensions left: {}, right: {}, up: {}, down: {}".format(x0, x1, y0, y1))
ret_img = crowd_image.crop((x0, y0, x1, y1))
print("cropped photo w: {}, h: {}".format(ret_img.width, ret_img.height))
ret_img.save("/Users/roger/Documents/GitHub/Finding-Maldo/test_{}_{}.png".format(src_width, src_height))
def pick_face(path):
face_coords = []
with io.open(path, 'rb') as image_file:
content = image_file.read()
image = vision.Image(content=content)
response = client.face_detection(image=image, max_results=50)
faces = response.face_annotations
a = plt.imread(path)
fig, ax = plt.subplots(1)
ax.imshow(a)
for face in faces:
vertices = ([(vertex.x, vertex.y)
for vertex in face.bounding_poly.vertices])
face_coords.append(vertices)
#print('face bounds: ', vertices)
# vertices are as follows: top left, top right, bottom right, bottom left.
#rect = pch.Rectangle(vertices[0], (vertices[1][0] - vertices[0][0]),
# (vertices[2][1] - vertices[0][1]), linewidth = 1, edgecolor ='r', facecolor ='none')
# pch.Rectangle( (26, 453), 20, 23)
#ax.add_patch(rect)
if response.error.message:
raise Exception(
'{}\nFor more info on error messages, check: '
'https://cloud.google.com/apis/design/errors'.format(
response.error.message))
randint = int(50*random.random())
chosen_face = face_coords[randint]
rect = pch.Rectangle(chosen_face[0], (vertices[1][0] - vertices[0][0]),
(vertices[2][1] - vertices[0][1]), linewidth = 1, edgecolor ='r', facecolor ='none')
ax.add_patch(rect)
return chosen_face
# return type is a list of lists of tuples representing where each internal list represents a face, and each
# tuple is a coordinate of the face; top left, top right, bottom right, bottom left respectively.
crop_image(500,500)
pick_face('/Users/roger/Documents/GitHub/Finding-Maldo/test_500_500.png')