-
Notifications
You must be signed in to change notification settings - Fork 25
/
Copy pathtrain.py
110 lines (88 loc) · 4.04 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
import os
import os.path as osp
import torch
import imageio.v2 as iio
import numpy as np
import argparse
from src.config.configloading import load_config
from src.render import render, run_network
from src.trainer import Trainer
from src.loss import calc_mse_loss
from src.utils import get_psnr, get_mse, get_psnr_3d, get_ssim_3d, cast_to_image
def config_parser():
parser = argparse.ArgumentParser()
parser.add_argument("--config", default="./config/abdomen_50.yaml",
help="configs file path")
return parser
parser = config_parser()
args = parser.parse_args()
cfg = load_config(args.config)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
class BasicTrainer(Trainer):
def __init__(self):
"""
Basic network trainer.
"""
super().__init__(cfg, device)
print(f"[Start] exp: {cfg['exp']['expname']}, net: Basic network")
def compute_loss(self, data, global_step, idx_epoch):
rays = data["rays"].reshape(-1, 8)
projs = data["projs"].reshape(-1)
ret = render(rays, self.net, self.net_fine, **self.conf["render"])
projs_pred = ret["acc"]
loss = {"loss": 0.}
calc_mse_loss(loss, projs, projs_pred)
# Log
for ls in loss.keys():
self.writer.add_scalar(f"train/{ls}", loss[ls].item(), global_step)
return loss["loss"]
def eval_step(self, global_step, idx_epoch):
"""
Evaluation step
"""
# Evaluate projection
select_ind = np.random.choice(len(self.eval_dset))
projs = self.eval_dset.projs[select_ind]
rays = self.eval_dset.rays[select_ind].reshape(-1, 8)
H, W = projs.shape
projs_pred = []
for i in range(0, rays.shape[0], self.n_rays):
projs_pred.append(render(rays[i:i+self.n_rays], self.net, self.net_fine, **self.conf["render"])["acc"])
projs_pred = torch.cat(projs_pred, 0).reshape(H, W)
# Evaluate density
image = self.eval_dset.image
image_pred = run_network(self.eval_dset.voxels, self.net_fine if self.net_fine is not None else self.net, self.netchunk)
image_pred = image_pred.squeeze()
loss = {
"proj_mse": get_mse(projs_pred, projs),
"proj_psnr": get_psnr(projs_pred, projs),
"psnr_3d": get_psnr_3d(image_pred, image),
"ssim_3d": get_ssim_3d(image_pred, image),
}
# Logging
show_slice = 5
show_step = image.shape[-1]//show_slice
show_image = image[...,::show_step]
show_image_pred = image_pred[...,::show_step]
show = []
for i_show in range(show_slice):
show.append(torch.concat([show_image[..., i_show], show_image_pred[..., i_show]], dim=0))
show_density = torch.concat(show, dim=1)
show_proj = torch.concat([projs, projs_pred], dim=1)
self.writer.add_image("eval/density (row1: gt, row2: pred)", cast_to_image(show_density), global_step, dataformats="HWC")
self.writer.add_image("eval/projection (left: gt, right: pred)", cast_to_image(show_proj), global_step, dataformats="HWC")
for ls in loss.keys():
self.writer.add_scalar(f"eval/{ls}", loss[ls], global_step)
# Save
eval_save_dir = osp.join(self.evaldir, f"epoch_{idx_epoch:05d}")
os.makedirs(eval_save_dir, exist_ok=True)
np.save(osp.join(eval_save_dir, "image_pred.npy"), image_pred.cpu().detach().numpy())
np.save(osp.join(eval_save_dir, "image_gt.npy"), image.cpu().detach().numpy())
iio.imwrite(osp.join(eval_save_dir, "slice_show_row1_gt_row2_pred.png"), (cast_to_image(show_density)*255).astype(np.uint8))
iio.imwrite(osp.join(eval_save_dir, "proj_show_left_gt_right_pred.png"), (cast_to_image(show_proj)*255).astype(np.uint8))
with open(osp.join(eval_save_dir, "stats.txt"), "w") as f:
for key, value in loss.items():
f.write("%s: %f\n" % (key, value.item()))
return loss
trainer = BasicTrainer()
trainer.start()