-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain_nia_building_github.py
325 lines (259 loc) · 15 KB
/
train_nia_building_github.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
"""
NIA Building segmentation
Building detection
"""
import torch
import torch.nn as nn
from torch.utils import data
from torch.autograd import Variable
import torch.optim as optim
import torch.backends.cudnn as cudnn
import torch.nn.functional as F
import argparse
import numpy as np
import sys
import os
import os.path as osp
import matplotlib.pyplot as plt
import random
from PIL import Image
import csv
from torchvision import models
# from utils.loss import CrossEntropy2d
from util.LoadDataOCD import LoadsegDBcrop_nia_paper
# multi GPU
import torch.nn as nn
from util.losses import ComboLoss
""""=============================================================================="""
""" GPU device 설정 """
"""==============================================================================="""
gpu_device = '3' # GPU 번호가 1번인 GPU 사용
"""=============================================================================="""
""" """
""" 주요 파라미터 셋팅 """
""" """
"""=============================================================================="""
BATCH_SIZE = 14 # 18
NUM_EPOCH = 150 # epoch
model_mode = 'DeepRes101' # DeepRes101 / DeepRes50 / DeepFCN101
"""------------------------ LOAD ---------------------------"""
IMG_FORMAT = '.png'
GT_FORMAT = '.png'
INPUT_SIZE = 512 # 학습으로 들어가는 영상 크기
ORIGINAL_SIZE = 1024 # 데이터셋 영상 크기
csv_data = 'list_building_train_pub4_modi.csv'
DATA_DIRECTORY = '/mnt/datasets/RSI_OP_NIA_PUB4/building'
img_folder_name = 'asset' # DATA_DIRECTORY 내 image 가 들어있는 폴더 이름
label_folder_name = 'label_gray_contour_pub4' # DATA_DIRECTORY 내 GT image 가 들어있는 폴더 이름
"""------------------------------- SAVE -----------------------------------"""
SAVE_PRED_EVERY = 20 # 해당 iter 마다 한번씩 저장
SNAPSHOT_DIR = '/mnt/workspace/hyunguk/nia/snapshots_nia_building_resnet50_contour_test/' # 저장 경로
"""------------------------ function parameters ---------------------------"""
WEIGHT_DECAY = 0.0005 # weight 감소량
LEARNING_RATE = 1e-3
MOMENTUM = 0.9
NUM_CLASSES = 7 # 0:NO building, 1:소형, 2:아파트, 3:공장, 4:중형단독시설, 5:대형시설, 6:contour
POWER = 0.9
"""=============================================================================="""
""" """
""" Parser """
""" """
"""=============================================================================="""
def get_arguments():
"""Parse all the arguments provided from the CLI.
Returns:
A list of parsed arguments.
"""
parser = argparse.ArgumentParser(description='BUILDING DETECTION')
parser.add_argument("--batch-size", type=int, default=BATCH_SIZE,
help="Batch size for training")
parser.add_argument("--learning-rate", type=float, default=LEARNING_RATE,
help="Base learning rate for training with polynomial decay.")
parser.add_argument("--momentum", type=float, default=MOMENTUM,
help="Momentum component of the optimiser.")
parser.add_argument("--data-dir", type=str, default=DATA_DIRECTORY,
help="Path to the directory containing the source dataset.")
parser.add_argument("--num-classes", type=int, default=NUM_CLASSES,
help="Number of classes to predict (including background).")
parser.add_argument("--num-epoch", type=int, default=NUM_EPOCH,
help="Number of training steps.")
parser.add_argument("--power", type=float, default=POWER,
help="Decay parameter to compute the learning rate.")
parser.add_argument("--random-scale", default=False,
help="Whether to randomly scale the inputs during the training.")
parser.add_argument("--save-pred-every", type=int, default=SAVE_PRED_EVERY,
help="Save summaries and checkpoint every often.")
parser.add_argument("--snapshot-dir", type=str, default=SNAPSHOT_DIR,
help="Where to save snapshots(weight files) of the model.")
parser.add_argument("--weight-decay", type=float, default=WEIGHT_DECAY,
help="Regularisation parameter")
parser.add_argument("--gpu", type=str, default=gpu_device,
help="choose gpu device.")
parser.add_argument("--img-format", type=str, default=IMG_FORMAT,
help="Input image format")
parser.add_argument("--gt-format", type=str, default=GT_FORMAT,
help="Input ground truth format")
parser.add_argument("--input-size", type=int, default=INPUT_SIZE,
help="The size of input image for training")
parser.add_argument("--imgdata-size", type=int, default=ORIGINAL_SIZE,
help="The size of image in the dataset")
parser.add_argument("--csv-data", type=str, default=csv_data,
help="Dataset list for training phase")
parser.add_argument("--model-mode", type=str, default=model_mode,
help="Models : DeepRes101 / DeepRes50 / DeepFCN101")
parser.add_argument("--img-folder-name", type=str, default=img_folder_name,
help="folder name including image data")
parser.add_argument("--label-folder-name", type=str, default=label_folder_name,
help="folder name including GT data")
return parser.parse_args()
args = get_arguments()
os.environ['CUDA_VISIBLE_DEVICES']= args.gpu
automated_log_path = SNAPSHOT_DIR + "log_building.txt" # log 저장 이름
INPUT_SIZE_m = [args.input_size, args.input_size]
original_size = [args.imgdata_size, args.imgdata_size] # width, height
IMG_MEAN = np.array((128, 128, 128), dtype=np.float32) # 학습 속도를 위해 RGB 128을 영점으로 둔다. [-128~127], Load code에서 128로 나눔 [-1~0.999]
"""=============================================================================="""
""" """
""" Learning rate options """
""" """
"""=============================================================================="""
def lr_poly(base_lr, iter, max_iter, power):
return base_lr * ((1 - float(iter) / max_iter) ** (power))
def adjust_learning_rate(optimizer, i_iter):
lr = lr_poly(args.learning_rate, i_iter, args.num_epoch, args.power)
optimizer.param_groups[0]['lr'] = lr
if len(optimizer.param_groups) > 1:
optimizer.param_groups[1]['lr'] = lr * 10
"""=============================================================================="""
""" """
""" Extraction of matching Label """
""" """
"""=============================================================================="""
def LabelTranformer(dataName, data_idx, label_folder_name):
"""
dataName: image, label, name 의 정보들
data_name: post, pre 를 제외한 데이터 이름
"""
label_set = []
for i in range(dataName['name'].__len__()):
# Label (GT) image open
label_building = Image.open(label_folder_name +'/' + dataName['name'][i] + args.gt_format)
if dataName["switching"][i] >= 0.5:
label_building = label_building.transpose(Image.ROTATE_180)
label = np.zeros((INPUT_SIZE_m[0], INPUT_SIZE_m[1], args.num_classes), np.float32)
# label (buildings)
label_building = label_building.crop((int(dataName["left"][i]), int(dataName["top"][i]), int(dataName["W"][i]), int(dataName["H"][i])))
label_building = np.asarray(label_building, np.float32)
for j in range(args.num_classes):
idx_i, idx_j = np.where(label_building[:,:] == j)
label[idx_i, idx_j, j] = 1.0 #building ID
label_set.append(label.copy())
return label_set
"""=============================================================================="""
""" """
""" MAIN """
""" """
"""=============================================================================="""
def main():
cudnn.enabled = True
"""-------------------------- 개발 MODEL ROAD --------------------------"""
# DeepRes101 / DeepRes50 / DeepFCN101
if args.model_mode == 'DeepRes101':
model = models.segmentation.deeplabv3_resnet101(pretrained=False, num_classes=args.num_classes)
elif args.model_mode == 'DeepRes50':
model = models.segmentation.deeplabv3_resnet50(pretrained=False, num_classes=args.num_classes)
elif args.model_mode == 'DeepFCN101':
model = models.segmentation.fcn_resnet101(pretrained=False, num_classes=args.num_classes)
else:
raise Exception("Please select a model")
model.cuda(0)
# model=nn.DataParallel(model)
model.train()
# 쉽게 true로 두면 비용(memory 등) 이 더 들지만 성능이 향상됨.
cudnn.benchmark = False # cudnn.benchmark = true -- uses the inbuilt cudnn auto-tuner to find the fastest convolution algorithms.
# -- If this is set to false, uses some in-built heuristics that might not always be fastest.
"""-------------------------- FILE SAVE --------------------------"""
if not os.path.exists(args.snapshot_dir):
os.makedirs(args.snapshot_dir)
# log 값을 기록
with open(automated_log_path, "a") as myfile:
myfile.write("Epoch\t\titer\t\tloss")
"""-------------------------- FILE LOAD --------------------------"""
name_list = []
# f = open(args.data_dir + args.csv_data, 'r')
f = open(args.csv_data, 'r')
names = csv.reader(f)
for name in names:
name[0] = name[0] + args.gt_format # csv 파일 list 에 확장자가 빠진 이름들의 list 이므로
name_list.append(name[0])
f.close()
filename_list_imgs = os.listdir(args.data_dir + '/' + args.img_folder_name)
filename_list_labels = os.listdir(args.data_dir + '/' + args.label_folder_name)
# Thumbs.db 파일 때문에 정확하게 해당 확장자만 불러옴
image_list_imgs_whole = [file_i for file_i in filename_list_imgs if file_i.endswith(args.img_format)]
image_list_imgs = name_list
ITER_SIZE = int(image_list_imgs.__len__() / args.batch_size) # training dataset 갯수 / batch_size
trainloader = data.DataLoader(
LoadsegDBcrop_nia_paper(args.data_dir, args.img_folder_name, image_list_imgs, args.label_folder_name,
mean=IMG_MEAN, crop_size=INPUT_SIZE_m, img_size=original_size,
scale=args.random_scale),
batch_size=args.batch_size, shuffle=True, pin_memory=True)
trainloader_iter = iter(trainloader)
# implement model.optim_parameters(args) to handle different models' lr setting
optimizer = optim.SGD(model.parameters(),
lr=args.learning_rate, momentum=args.momentum, weight_decay=args.weight_decay)
optimizer.zero_grad()
# bce_loss = torch.nn.BCEWithLogitsLoss()
loss_function = ComboLoss({'dice': 1, 'focal': 1}, per_image=True).cuda(0)
"""----------------------- TRAINING START ------------------------"""
for i_iter in range(args.num_epoch):
trainloader_iter = iter(trainloader)
# 파라미터를 학습 하겠다.
for param in model.parameters():
param.requires_grad = True
adjust_learning_rate(optimizer, i_iter)
for sub_i in range(ITER_SIZE):
"""----------------------- LOAD DATA ------------------------"""
batch = trainloader_iter.next()
# image 하나 뽑기 pre or post image
image_input, datafiles, data_idx = batch #img.copy(), label_json_info, np.array(size), data_name
image_input = image_input.transpose(1, 3)
image_input = image_input.transpose(2, 3)
image_input = Variable(image_input).cuda(0)
# pair image 와 label load
labels = LabelTranformer(datafiles, data_idx, args.data_dir + '/' + args.label_folder_name)
# label
labels = torch.tensor(labels)
# labels = np.asarray(labels)
labels = labels.transpose(1, 3)
labels = labels.transpose(2, 3)
labels = Variable(labels).cuda(0)
"""----------------------- RESULTS ------------------------"""
# pred_comb = model(image_input)
pred_comb = model(image_input)
# pred_comb = torch.squeeze(pred_comb) # 불필요한 1차원 제거
# labels = labels.unsqueeze(1) # 필요한 1번째 차원 증가
"""----------------------- BACKWARD ------------------------"""
loss_target = loss_function(pred_comb['out'], labels)
# loss_target = loss_function(pred_comb, labels)
# proper normalization
loss = loss_target
""" source loss, backward for differention """
optimizer.zero_grad()
loss.backward()
optimizer.step() # weight update
print('sub_i = {0:3d}/{1:3d}, epoch = {2:3d}/{3:3d}, loss = {4:.3f}'.format(sub_i, ITER_SIZE, i_iter, args.num_epoch, loss))
"""----------------------- SAVE WEIGHT FILE ------------------------"""
with open(automated_log_path, "a") as myfile: # 원래 있던 값에 덮어쓰기
myfile.write("\n%d\t\t%d\t\t%.3f" % (i_iter, sub_i, loss))
if sub_i % args.save_pred_every == 0 and sub_i != 0:
print('taking snapshot ...')
torch.save(model.state_dict(), osp.join(args.snapshot_dir, 'sn6_resunet50_' + str(sub_i) + '_ep_' + str(i_iter) + '.pth'))
print('exp = {}'.format(args.snapshot_dir))
# print('iter = {0:8d}/{1:8d}, loss_seg1 = {2:.3f} loss_seg2 = {3:.3f} loss_adv1 = {4:.3f}, loss_adv2 = {5:.3f} loss_D1 = {6:.3f} loss_D2 = {7:.3f}'.format(
# i_iter, args.num_steps, loss_seg_value1, loss_seg_value2, loss_adv_target_value1, loss_adv_target_value2, loss_D_value1, loss_D_value2))
if i_iter != 0:
print('taking snapshot ...')
torch.save(model.state_dict(), osp.join(args.snapshot_dir, 'sn6_resunet50_' + str(i_iter) + '.pth'))
if __name__ == '__main__':
main()