Skip to content

Latest commit

 

History

History
131 lines (110 loc) · 5.49 KB

PE404-Information-Retrieval-Techniques.org

File metadata and controls

131 lines (110 loc) · 5.49 KB

<<<PE404>>> INFORMATION RETRIEVAL TECHNIQUES

{{{credits}}}

LTPC
3003

CO PO MAPPING

PO1PO2PO3PO4PO5PO6PO7PO8PO9PO10PO11PO12PSO1PSO2PSO3
K3K4K5K5K6-------K5K3K6
CO1K3322010011101231
CO2K3322010011101231
CO3K3322010011101231
CO4K2211010011101120
CO5K3322010011101231
Score15111006005550510156
Course Mapping332020011101232

COURSE OBJECTIVES

  • To understand the basics of information retrieval with pertinence to modeling
  • To understand various components of IR system
  • To understand machine learning techniques for text classification and clustering
  • To explore various IR applications.

{{{unit}}}

UNIT IINTRODUCTION AND MODELING9

Basic Concepts: Retrieval process – Architecture – Boolean retrieval; IR Models: Taxonomy and characterization of IR models – Classical IR models – Alternative algebraic models – Models for Browsing – Retrieval Evaluation: Performance evaluation.

{{{unit}}}

UNIT IIINDEXING AND QUERYING9

Indexing: Inverted indices – Suffix trees – Suffix arrays – Compression; Querying: Query languages; Query Operations: Relevance feedback and query expansion – Automatic local and global analysis.

{{{unit}}}

UNIT IIISEARCHING9

Searching: Sequential searching – Pattern matching; Searching the Web: Characteristizing the Web – Search engines – Browsing – Searching using hyperlinks.

{{{unit}}}

UNIT IVCLASSIFICATION AND CLUSTERING9

Text Classification: Naive Bayes; Vector Space Classification: Rocchio – k-Nearest Neighbour; Flat Clustering: K-Means – Model-based clustering – Hierarchical clustering – Matrix decompositions and latent semantic indexing.

{{{unit}}}

UNIT VAPPLICATIONS9

XML Retrieval – Multimedia IR – Parallel and Distributed IR – Digital Libraries – Social Media Retrieval – Content-based Image Retrieval – Online Public Access Catalogs (OPACs).

\hfill Total Periods: 45

COURSE OUTCOMES

After the completion of this course, students will be able to:

  • Describe various IR modeling techniques (K3)
  • Identify and design the various components of an Information Retrieval system (K3)
  • Apply machine learning techniques to text classification and clustering for efficient Information Retrieval (K3)
  • Describe various IR applications (K2)
  • Apply IR evaluation metrics to measure the performance of IR systems (K3).

TEXT BOOKS

  1. Ricardo Baeza Yates, Berthier Ribeiro Neto, “Modern Information Retrieval: The Concepts and Technology behind Search”, ACM Press Books, 2nd Edition, 2011.
  2. Christopher D Manning, Prabhakar Raghavan, Hinrich Schutze, “Introduction to Information Retrieval”, Cambridge University Press, 1st South Asian Edition, 2008.

REFERENCES

  1. Stefan Buttcher, Charles L A Clarke, Gordon V Cormack,“Information Retrieval – Implementing and Evaluating Search Engines”, The MIT Press, Cambridge, Massachusetts London, England, 2010.
  2. Cheng Xiang Zhai, Sean Massung, “Text Data Management and Analysis: A Practical Introduction to Information Retrieval and Text Mining”, ACM Books, 2016.
  3. Reza Zafarani, Mohammad Ali Abbasi, Huan Liu, “Social Media Mining: An Introduction”, 1st Edition, Cambridge University Press, 2014.
  4. Vipin Tyagi, “Content-Based Image Retrieval: Ideas, Influences, and Current Trends”, 1st Edition, Springer, 2017.
  5. Marcia J Bates, “Understanding Information Retrieval Systems: Management, Types, and Standards”, CRC Press, 2012.