-
Notifications
You must be signed in to change notification settings - Fork 91
/
Copy pathpipelines.py
executable file
·329 lines (289 loc) · 11.3 KB
/
pipelines.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
import logging
from abc import ABC
from abc import abstractmethod
from collections import OrderedDict
from dataclasses import dataclass
from typing import Callable
from typing import Iterable
from typing import List
import numpy as np
import tensorflow as tf
import transformers
from . import alignment
from . import utils
from .data_types import TokenizedExample
from .data_types import Example
from .data_types import LabeledExample
from .data_types import PredictedExample
from .data_types import SubTask
from .data_types import CompletedSubTask
from .data_types import Task
from .data_types import CompletedTask
from .data_types import InputBatch
from .data_types import OutputBatch
from .data_types import Sentiment
from .models import BertABSClassifier
from .training import classifier_loss
from .professors import Professor
logger = logging.getLogger('absa.pipeline')
@dataclass
class _Pipeline(ABC):
"""
The pipeline simplifies the use of the fine-tuned Aspect-Based Sentiment
Classifier. The aim is to classify the sentiment of a potentially long
text for several aspects. Furthermore, the pipeline gives the reasons for
a decision, so we can infer how much results are reliable. For the basic
absa, you benefit from the `__call__` method.
Please note that the package contains the separated submodule
`absa.training`. You can find there complete routines to tune or train
either the language model or the classifier. Check out the example on
the package website.
"""
@abstractmethod
def __call__(self, text: str, aspects: List[str]) -> CompletedTask:
"""
The __call__ method is for the basic inference to make predictions.
Parameters
----------
text
This is the raw task text without rigorous length limit.
The text_splitter, if provided, splits the text into smaller spans,
and the pipeline processes them independently.
aspects
The aspects for which the pipeline does the sentiment analysis.
For now, only the single word should describe an aspect
(one token, do not combine words using a hyphen).
Returns
-------
completed_task
The labeled example after the classification.
"""
@abstractmethod
def preprocess(self, text: str, aspects: List[str]) -> Task:
"""
Preprocess the raw task text and aspects into the task. Note that
we may need to split a long text into smaller text chunks, called
spans. We can do it using a text splitter which defines how long
the span is.
Parameters
----------
text
This is the raw task text without rigorous length limit.
The pipeline can contain the text_splitter, which splits a text
into smaller chunks, called spans.
aspects
The aspects for which the pipeline does the sentiment analysis.
Returns
-------
task
Text and aspects in the form of well-prepared tokenized example.
"""
@abstractmethod
def tokenize(self, examples: Iterable[Example]) -> Iterable[TokenizedExample]:
"""
Tokenize the example. The model can not process the raw pair of two
strings (text, aspect) directly.
Parameters
----------
examples
Iterable of examples, the pairs of two raw strings (text, aspect).
Returns
-------
tokenized_examples
Independent *preprocessed* tokenized example.
"""
@abstractmethod
def encode(self, examples: Iterable[TokenizedExample]) -> InputBatch:
"""
Encode tokenized examples. The input batch is a container of tensors
crucial for the model to make a prediction. The names are compatible
with the *transformers* package.
Parameters
----------
examples
Independent *preprocessed* tokenized example.
Returns
-------
input_batch
Container of tensors needed to make a prediction.
"""
@abstractmethod
def predict(self, input_batch: InputBatch) -> OutputBatch:
"""
Pass the input batch to the pretrained model to make a prediction.
The pipeline collects not only scores, the softmax of logits,
but also hidden states, attentions, and attention gradients with
respect to the model output. In the end, the method packs them into
the output batch and returns.
Parameters
----------
input_batch
Container of tensors needed to make a prediction.
Returns
-------
output_batch
Container of tensors describing a prediction.
"""
@staticmethod
def postprocess(
task: Task,
batch_examples: Iterable[PredictedExample]
) -> CompletedTask:
"""
Postprocess using the detailed information about the prediction.
The predicted examples contains additional attributes such as the
sentiment and scores for each sentiment class.
Parameters
----------
task
Text and aspects in the form of well-prepared tokenized example.
batch_examples
Predicted examples that come from a professor.
Returns
-------
CompletedTask
Return the completed task with predicted examples.
"""
@abstractmethod
def evaluate(
self,
examples: Iterable[LabeledExample],
metric: tf.metrics.Metric,
batch_size: int
) -> tf.Tensor:
"""
Evaluate the pre-trained model.
Parameters
----------
examples
Labeled true example.
metric
TensorFlow metric.
batch_size
Number of samples in a batch.
Returns
-------
result
Metric value tensor.
"""
@dataclass
class Pipeline(_Pipeline):
model: BertABSClassifier
tokenizer: transformers.BertTokenizer
professor: Professor
text_splitter: Callable[[str], List[str]] = None
def __call__(self, text: str, aspects: List[str]) -> CompletedTask:
task = self.preprocess(text, aspects)
predictions = self.transform(task.examples)
completed_task = self.postprocess(task, predictions)
return completed_task
def preprocess(self, text: str, aspects: List[str]) -> Task:
spans = self.text_splitter(text) if self.text_splitter else [text]
subtasks = OrderedDict()
for aspect in aspects:
examples = [Example(span, aspect) for span in spans]
subtasks[aspect] = SubTask(text, aspect, examples)
task = Task(text, aspects, subtasks)
return task
def transform(self, examples: Iterable[Example]) -> Iterable[PredictedExample]:
tokenized_examples = self.tokenize(examples)
input_batch = self.encode(tokenized_examples)
output_batch = self.predict(input_batch)
predictions = self.review(tokenized_examples, output_batch)
return predictions
def tokenize(self, examples: Iterable[Example]) -> List[TokenizedExample]:
return [alignment.tokenize(self.tokenizer, e.text, e.aspect) for e in examples]
def encode(self, examples: Iterable[TokenizedExample]) -> InputBatch:
token_pairs = [(e.text_subtokens, e.aspect_subtokens) for e in examples]
encoded = self.tokenizer.batch_encode_plus(
token_pairs,
add_special_tokens=True,
padding=True,
return_tensors='tf',
return_attention_masks=True,
max_length=512
)
batch = InputBatch(
token_ids=encoded['input_ids'],
attention_mask=encoded['attention_mask'],
token_type_ids=encoded['token_type_ids']
)
return batch
def predict(self, input_batch: InputBatch) -> OutputBatch:
# This implementation forces the model to return the detailed
# output including hidden states and attentions.
with tf.GradientTape() as tape:
logits, hidden_states, attentions = self.model.call(
input_ids=input_batch.token_ids,
attention_mask=input_batch.attention_mask,
token_type_ids=input_batch.token_type_ids
)
# We assume that our predictions are correct. This is
# required to calculate the attention gradients for
# probing and exploratory purposes.
predictions = tf.argmax(logits, axis=-1)
labels = tf.one_hot(predictions, depth=3)
loss_value = classifier_loss(labels, logits)
attention_grads = tape.gradient(loss_value, attentions)
# Compute the final prediction scores.
scores = tf.nn.softmax(logits, axis=1)
# Stack a tensor tuple into a single multi-dim array:
# hidden states: [input_batch, layer, sequence, embedding]
# attentions: [input_batch, layer, head, attention, attention]
# Note that we make an assumption that the embedding's size
# is the same as the model hidden states.
stack = lambda x, order: tf.transpose(tf.stack(x), order)
hidden_states = stack(hidden_states, [1, 0, 2, 3])
attentions = stack(attentions, [1, 0, 2, 3, 4])
attention_grads = stack(attention_grads, [1, 0, 2, 3, 4])
output_batch = OutputBatch(
scores=scores,
hidden_states=hidden_states,
attentions=attentions,
attention_grads=attention_grads
)
return output_batch
def review(
self,
examples: Iterable[TokenizedExample],
output_batch: OutputBatch
) -> Iterable[PredictedExample]:
return (self.professor.review(e, o) for e, o in zip(examples, output_batch))
@staticmethod
def postprocess(
task: Task,
batch_examples: Iterable[PredictedExample]
) -> CompletedTask:
batch_examples = list(batch_examples) # Materialize examples.
subtasks = OrderedDict()
for start, end in task.indices:
examples = batch_examples[start:end]
# Examples should have the same aspect (an implicit check).
aspect, = {e.aspect for e in examples}
scores = np.max([e.scores for e in examples], axis=0)
scores /= np.linalg.norm(scores, ord=1)
sentiment_id = np.argmax(scores).astype(int)
aspect_document = CompletedSubTask(
text=task.text,
aspect=aspect,
examples=examples,
sentiment=Sentiment(sentiment_id),
scores=list(scores)
)
subtasks[aspect] = aspect_document
task = CompletedTask(task.text, task.aspects, subtasks)
return task
def evaluate(
self,
examples: Iterable[LabeledExample],
metric: tf.metrics.Metric,
batch_size: int
) -> tf.Tensor:
batches = utils.batches(examples, batch_size)
for batch in batches:
predictions = self.transform(batch)
y_pred = [e.sentiment.value for e in predictions]
y_true = [e.sentiment.value for e in batch]
metric.update_state(y_true, y_pred)
result = metric.result()
return result