You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
import aspect_based_sentiment_analysis as absa
nlp = absa.load()
text = ("We are great fans of Slack, but we wish the subscriptions "
"were more accessible to small startups.")
slack, price = nlp(text, aspects=['slack', 'price'])
assert price.sentiment == absa.Sentiment.negative
assert slack.sentiment == absa.Sentiment.positive
File /opt/conda/lib/python3.10/site-packages/aspect_based_sentiment_analysis/loads.py:34, in load(name, text_splitter, reference_recognizer, pattern_recognizer, **model_kwargs)
32 try:
33 config = BertABSCConfig.from_pretrained(name, **model_kwargs)
---> 34 model = BertABSClassifier.from_pretrained(name, config=config)
35 tokenizer = transformers.BertTokenizer.from_pretrained(name)
36 professor = Professor(reference_recognizer, pattern_recognizer)
File /opt/conda/lib/python3.10/site-packages/transformers/modeling_tf_utils.py:2949, in TFPreTrainedModel.from_pretrained(cls, pretrained_model_name_or_path, config, cache_dir, ignore_mismatched_sizes, force_download, local_files_only, token, revision, use_safetensors, *model_args, **kwargs)
2946 model_kwargs["load_weight_prefix"] = load_weight_prefix + "/" + model_kwargs.get("name")
2948 # Instantiate model.
-> 2949 model = cls(config, *model_args, **model_kwargs)
2951 if tf_to_pt_weight_rename is None and hasattr(model, "tf_to_pt_weight_rename"):
2952 # TODO Matt: This is a temporary workaround to allow weight renaming, but requires a method
2953 # to be defined for each class that requires a rename. We can probably just have a class-level
2954 # dict and a single top-level method or something and cut down a lot of boilerplate code
2955 tf_to_pt_weight_rename = model.tf_to_pt_weight_rename
File /opt/conda/lib/python3.10/site-packages/keras/src/models/model.py:146, in Model.new(cls, *args, **kwargs)
143 from keras.src.models import functional
145 return functional.Functional(*args, **kwargs)
--> 146 return typing.cast(Model, super().new(cls))
File /opt/conda/lib/python3.10/site-packages/keras/src/layers/layer.py:1353, in Layer.setattr(self, name, value)
1351 elif name != "_tracker":
1352 self._initialize_tracker()
-> 1353 return super().setattr(name, value)
File /opt/conda/lib/python3.10/site-packages/keras/src/backend/tensorflow/trackable.py:28, in KerasAutoTrackable.setattr(self, name, value)
24 if getattr(self, "_self_setattr_tracking", True):
25 value = sticky_attribute_assignment(
26 trackable=self, value=value, name=name
27 )
---> 28 super().setattr(name, value)
File /opt/conda/lib/python3.10/site-packages/tf_keras/src/engine/training.py:388, in Model.setattr(self, name, value)
381 except AttributeError:
382 raise RuntimeError(
383 "It looks like you are subclassing Model and you "
384 "forgot to call super().init()."
385 " Always start with this line."
386 )
--> 388 super().setattr(name, value)
File /opt/conda/lib/python3.10/site-packages/tf_keras/src/engine/base_layer.py:3152, in Layer.setattr(self, name, value)
3147 # Wraps data structures in Trackable, unwraps NoDependency objects.
3148 value = tf.internal.tracking.sticky_attribute_assignment(
3149 trackable=self, value=value, name=name
3150 )
-> 3152 reference_counts = self._obj_reference_counts
3153 reference_counts[value] = reference_counts.get(value, 0) + 1
3155 # When replacing an existing tf.Variable with a new one, we want to
3156 # check its existing position in the
3157 # self._trainable/non_trainable_variable, so that we can put it back to
3158 # the original position.
File /opt/conda/lib/python3.10/site-packages/tf_keras/src/engine/base_layer.py:3042, in Layer._obj_reference_counts(self)
3039 @Property
3040 def _obj_reference_counts(self):
3041 """A dict counting the number of attributes referencing an object."""
-> 3042 self._maybe_create_attribute(
3043 "_obj_reference_counts_dict",
3044 object_identity.ObjectIdentityDictionary(),
3045 )
3046 return self._obj_reference_counts_dict
File /opt/conda/lib/python3.10/site-packages/keras/src/layers/layer.py:1353, in Layer.setattr(self, name, value)
1351 elif name != "_tracker":
1352 self._initialize_tracker()
-> 1353 return super().setattr(name, value)
File /opt/conda/lib/python3.10/site-packages/keras/src/backend/tensorflow/trackable.py:28, in KerasAutoTrackable.setattr(self, name, value)
24 if getattr(self, "_self_setattr_tracking", True):
25 value = sticky_attribute_assignment(
26 trackable=self, value=value, name=name
27 )
---> 28 super().setattr(name, value)
File /opt/conda/lib/python3.10/site-packages/tf_keras/src/engine/training.py:388, in Model.setattr(self, name, value)
381 except AttributeError:
382 raise RuntimeError(
383 "It looks like you are subclassing Model and you "
384 "forgot to call super().init()."
385 " Always start with this line."
386 )
--> 388 super().setattr(name, value)
File /opt/conda/lib/python3.10/site-packages/tf_keras/src/engine/base_layer.py:3152, in Layer.setattr(self, name, value)
3147 # Wraps data structures in Trackable, unwraps NoDependency objects.
3148 value = tf.internal.tracking.sticky_attribute_assignment(
3149 trackable=self, value=value, name=name
3150 )
-> 3152 reference_counts = self._obj_reference_counts
3153 reference_counts[value] = reference_counts.get(value, 0) + 1
3155 # When replacing an existing tf.Variable with a new one, we want to
3156 # check its existing position in the
3157 # self._trainable/non_trainable_variable, so that we can put it back to
3158 # the original position.
File /opt/conda/lib/python3.10/site-packages/tf_keras/src/engine/base_layer.py:3042, in Layer._obj_reference_counts(self)
3039 @Property
3040 def _obj_reference_counts(self):
3041 """A dict counting the number of attributes referencing an object."""
-> 3042 self._maybe_create_attribute(
3043 "_obj_reference_counts_dict",
3044 object_identity.ObjectIdentityDictionary(),
3045 )
3046 return self._obj_reference_counts_dict
[... skipping similar frames: Layer.setattr at line 1352 (327 times), Layer.setattr at line 1353 (327 times), Layer._initialize_tracker at line 307 (327 times), no_automatic_dependency_tracking..wrapper at line 26 (327 times), KerasAutoTrackable.setattr at line 28 (326 times), Model.setattr at line 388 (326 times), Layer.setattr at line 3152 (326 times), no_automatic_dependency_tracking.._method_wrapper at line 202 (326 times), Layer._obj_reference_counts at line 3042 (326 times)]
File /opt/conda/lib/python3.10/site-packages/keras/src/backend/tensorflow/trackable.py:28, in KerasAutoTrackable.setattr(self, name, value)
24 if getattr(self, "_self_setattr_tracking", True):
25 value = sticky_attribute_assignment(
26 trackable=self, value=value, name=name
27 )
---> 28 super().setattr(name, value)
File /opt/conda/lib/python3.10/site-packages/tf_keras/src/engine/training.py:388, in Model.setattr(self, name, value)
381 except AttributeError:
382 raise RuntimeError(
383 "It looks like you are subclassing Model and you "
384 "forgot to call super().init()."
385 " Always start with this line."
386 )
--> 388 super().setattr(name, value)
File /opt/conda/lib/python3.10/site-packages/tf_keras/src/engine/base_layer.py:3152, in Layer.setattr(self, name, value)
3147 # Wraps data structures in Trackable, unwraps NoDependency objects.
3148 value = tf.internal.tracking.sticky_attribute_assignment(
3149 trackable=self, value=value, name=name
3150 )
-> 3152 reference_counts = self._obj_reference_counts
3153 reference_counts[value] = reference_counts.get(value, 0) + 1
3155 # When replacing an existing tf.Variable with a new one, we want to
3156 # check its existing position in the
3157 # self._trainable/non_trainable_variable, so that we can put it back to
3158 # the original position.
File /opt/conda/lib/python3.10/site-packages/tf_keras/src/engine/base_layer.py:3042, in Layer._obj_reference_counts(self)
3039 @Property
3040 def _obj_reference_counts(self):
3041 """A dict counting the number of attributes referencing an object."""
-> 3042 self._maybe_create_attribute(
3043 "_obj_reference_counts_dict",
3044 object_identity.ObjectIdentityDictionary(),
3045 )
3046 return self._obj_reference_counts_dict
File /opt/conda/lib/python3.10/site-packages/keras/src/layers/layer.py:1353, in Layer.setattr(self, name, value)
1351 elif name != "_tracker":
1352 self._initialize_tracker()
-> 1353 return super().setattr(name, value)
File /opt/conda/lib/python3.10/site-packages/keras/src/backend/tensorflow/trackable.py:25, in KerasAutoTrackable.setattr(self, name, value)
22 pass
24 if getattr(self, "_self_setattr_tracking", True):
---> 25 value = sticky_attribute_assignment(
26 trackable=self, value=value, name=name
27 )
28 super().setattr(name, value)
File /opt/conda/lib/python3.10/site-packages/keras/src/backend/tensorflow/trackable.py:43, in sticky_attribute_assignment(trackable, name, value)
31 def sticky_attribute_assignment(trackable, name, value):
32 """Adds dependencies, called from setattr.
33
34 Args:
(...)
41 The value which should be stored in the attribute.
42 """
---> 43 if isinstance(
44 value, (tracking.TrackedList, tracking.TrackedDict, tracking.TrackedSet)
45 ) and hasattr(trackable, "_tracked"):
46 trackable._tracked.append(name)
47 if not tracking.is_tracking_enabled():
RecursionError: maximum recursion depth exceeded in instancecheck
The text was updated successfully, but these errors were encountered:
RecursionError Traceback (most recent call last)
Cell In[7], line 1
----> 1 nlp = absa.load()
File /opt/conda/lib/python3.10/site-packages/aspect_based_sentiment_analysis/loads.py:34, in load(name, text_splitter, reference_recognizer, pattern_recognizer, **model_kwargs)
32 try:
33 config = BertABSCConfig.from_pretrained(name, **model_kwargs)
---> 34 model = BertABSClassifier.from_pretrained(name, config=config)
35 tokenizer = transformers.BertTokenizer.from_pretrained(name)
36 professor = Professor(reference_recognizer, pattern_recognizer)
File /opt/conda/lib/python3.10/site-packages/transformers/modeling_tf_utils.py:2949, in TFPreTrainedModel.from_pretrained(cls, pretrained_model_name_or_path, config, cache_dir, ignore_mismatched_sizes, force_download, local_files_only, token, revision, use_safetensors, *model_args, **kwargs)
2946 model_kwargs["load_weight_prefix"] = load_weight_prefix + "/" + model_kwargs.get("name")
2948 # Instantiate model.
-> 2949 model = cls(config, *model_args, **model_kwargs)
2951 if tf_to_pt_weight_rename is None and hasattr(model, "tf_to_pt_weight_rename"):
2952 # TODO Matt: This is a temporary workaround to allow weight renaming, but requires a method
2953 # to be defined for each class that requires a rename. We can probably just have a class-level
2954 # dict and a single top-level method or something and cut down a lot of boilerplate code
2955 tf_to_pt_weight_rename = model.tf_to_pt_weight_rename
File /opt/conda/lib/python3.10/site-packages/keras/src/models/model.py:146, in Model.new(cls, *args, **kwargs)
143 from keras.src.models import functional
145 return functional.Functional(*args, **kwargs)
--> 146 return typing.cast(Model, super().new(cls))
File /opt/conda/lib/python3.10/site-packages/keras/src/layers/layer.py:231, in Layer.new(cls, *args, **kwargs)
228 obj._post_build()
229 obj._lock_state()
--> 231 obj.build = build_wrapper
232 return obj
File /opt/conda/lib/python3.10/site-packages/keras/src/layers/layer.py:1352, in Layer.setattr(self, name, value)
1350 value = self._tracker.track(value)
1351 elif name != "_tracker":
-> 1352 self._initialize_tracker()
1353 return super().setattr(name, value)
File /opt/conda/lib/python3.10/site-packages/keras/src/utils/tracking.py:26, in no_automatic_dependency_tracking..wrapper(*args, **kwargs)
23 @wraps(fn)
24 def wrapper(*args, **kwargs):
25 with DotNotTrackScope():
---> 26 return fn(*args, **kwargs)
File /opt/conda/lib/python3.10/site-packages/keras/src/layers/layer.py:307, in Layer._initialize_tracker(self)
305 metrics = []
306 seed_generators = []
--> 307 self._tracker = tracking.Tracker(
308 {
309 "trainable_variables": (
310 lambda x: isinstance(x, backend.Variable) and x.trainable,
311 trainable_variables,
312 ),
313 "non_trainable_variables": (
314 lambda x: isinstance(x, backend.Variable)
315 and not x.trainable,
316 non_trainable_variables,
317 ),
318 "metrics": (lambda x: isinstance(x, Metric), metrics),
319 "layers": (
320 lambda x: isinstance(x, Layer)
321 and not isinstance(x, Metric),
322 layers,
323 ),
324 "seed_generators": (
325 lambda x: isinstance(x, backend.random.SeedGenerator),
326 seed_generators,
327 ),
328 },
329 exclusions={"non_trainable_variables": ["trainable_variables"]},
330 )
331 if backend.backend() == "tensorflow":
332 # Remove attribute tracking for lists (TF-specific attribute)
333 _self_setattr_tracking = getattr(
334 self, "_self_setattr_tracking", True
335 )
File /opt/conda/lib/python3.10/site-packages/keras/src/layers/layer.py:1353, in Layer.setattr(self, name, value)
1351 elif name != "_tracker":
1352 self._initialize_tracker()
-> 1353 return super().setattr(name, value)
File /opt/conda/lib/python3.10/site-packages/keras/src/backend/tensorflow/trackable.py:28, in KerasAutoTrackable.setattr(self, name, value)
24 if getattr(self, "_self_setattr_tracking", True):
25 value = sticky_attribute_assignment(
26 trackable=self, value=value, name=name
27 )
---> 28 super().setattr(name, value)
File /opt/conda/lib/python3.10/site-packages/tf_keras/src/engine/training.py:388, in Model.setattr(self, name, value)
381 except AttributeError:
382 raise RuntimeError(
383 "It looks like you are subclassing Model and you "
384 "forgot to call super().init()."
385 " Always start with this line."
386 )
--> 388 super().setattr(name, value)
File /opt/conda/lib/python3.10/site-packages/tf_keras/src/engine/base_layer.py:3152, in Layer.setattr(self, name, value)
3147 # Wraps data structures in Trackable, unwraps NoDependency objects.
3148 value = tf.internal.tracking.sticky_attribute_assignment(
3149 trackable=self, value=value, name=name
3150 )
-> 3152 reference_counts = self._obj_reference_counts
3153 reference_counts[value] = reference_counts.get(value, 0) + 1
3155 # When replacing an existing tf.Variable with a new one, we want to
3156 # check its existing position in the
3157 # self._trainable/non_trainable_variable, so that we can put it back to
3158 # the original position.
File /opt/conda/lib/python3.10/site-packages/tf_keras/src/engine/base_layer.py:3042, in Layer._obj_reference_counts(self)
3039 @Property
3040 def _obj_reference_counts(self):
3041 """A dict counting the number of attributes referencing an object."""
-> 3042 self._maybe_create_attribute(
3043 "_obj_reference_counts_dict",
3044 object_identity.ObjectIdentityDictionary(),
3045 )
3046 return self._obj_reference_counts_dict
File /opt/conda/lib/python3.10/site-packages/tensorflow/python/trackable/base.py:202, in no_automatic_dependency_tracking.._method_wrapper(self, *args, **kwargs)
200 def _method_wrapper(self, *args, **kwargs):
201 previous_value = getattr(self, "_self_setattr_tracking", True)
--> 202 self._self_setattr_tracking = False # pylint: disable=protected-access
203 try:
204 result = method(self, *args, **kwargs)
File /opt/conda/lib/python3.10/site-packages/keras/src/layers/layer.py:1352, in Layer.setattr(self, name, value)
1350 value = self._tracker.track(value)
1351 elif name != "_tracker":
-> 1352 self._initialize_tracker()
1353 return super().setattr(name, value)
File /opt/conda/lib/python3.10/site-packages/keras/src/utils/tracking.py:26, in no_automatic_dependency_tracking..wrapper(*args, **kwargs)
23 @wraps(fn)
24 def wrapper(*args, **kwargs):
25 with DotNotTrackScope():
---> 26 return fn(*args, **kwargs)
File /opt/conda/lib/python3.10/site-packages/keras/src/layers/layer.py:307, in Layer._initialize_tracker(self)
305 metrics = []
306 seed_generators = []
--> 307 self._tracker = tracking.Tracker(
308 {
309 "trainable_variables": (
310 lambda x: isinstance(x, backend.Variable) and x.trainable,
311 trainable_variables,
312 ),
313 "non_trainable_variables": (
314 lambda x: isinstance(x, backend.Variable)
315 and not x.trainable,
316 non_trainable_variables,
317 ),
318 "metrics": (lambda x: isinstance(x, Metric), metrics),
319 "layers": (
320 lambda x: isinstance(x, Layer)
321 and not isinstance(x, Metric),
322 layers,
323 ),
324 "seed_generators": (
325 lambda x: isinstance(x, backend.random.SeedGenerator),
326 seed_generators,
327 ),
328 },
329 exclusions={"non_trainable_variables": ["trainable_variables"]},
330 )
331 if backend.backend() == "tensorflow":
332 # Remove attribute tracking for lists (TF-specific attribute)
333 _self_setattr_tracking = getattr(
334 self, "_self_setattr_tracking", True
335 )
File /opt/conda/lib/python3.10/site-packages/keras/src/layers/layer.py:1353, in Layer.setattr(self, name, value)
1351 elif name != "_tracker":
1352 self._initialize_tracker()
-> 1353 return super().setattr(name, value)
File /opt/conda/lib/python3.10/site-packages/keras/src/backend/tensorflow/trackable.py:28, in KerasAutoTrackable.setattr(self, name, value)
24 if getattr(self, "_self_setattr_tracking", True):
25 value = sticky_attribute_assignment(
26 trackable=self, value=value, name=name
27 )
---> 28 super().setattr(name, value)
File /opt/conda/lib/python3.10/site-packages/tf_keras/src/engine/training.py:388, in Model.setattr(self, name, value)
381 except AttributeError:
382 raise RuntimeError(
383 "It looks like you are subclassing Model and you "
384 "forgot to call super().init()."
385 " Always start with this line."
386 )
--> 388 super().setattr(name, value)
File /opt/conda/lib/python3.10/site-packages/tf_keras/src/engine/base_layer.py:3152, in Layer.setattr(self, name, value)
3147 # Wraps data structures in Trackable, unwraps NoDependency objects.
3148 value = tf.internal.tracking.sticky_attribute_assignment(
3149 trackable=self, value=value, name=name
3150 )
-> 3152 reference_counts = self._obj_reference_counts
3153 reference_counts[value] = reference_counts.get(value, 0) + 1
3155 # When replacing an existing tf.Variable with a new one, we want to
3156 # check its existing position in the
3157 # self._trainable/non_trainable_variable, so that we can put it back to
3158 # the original position.
File /opt/conda/lib/python3.10/site-packages/tf_keras/src/engine/base_layer.py:3042, in Layer._obj_reference_counts(self)
3039 @Property
3040 def _obj_reference_counts(self):
3041 """A dict counting the number of attributes referencing an object."""
-> 3042 self._maybe_create_attribute(
3043 "_obj_reference_counts_dict",
3044 object_identity.ObjectIdentityDictionary(),
3045 )
3046 return self._obj_reference_counts_dict
File /opt/conda/lib/python3.10/site-packages/tensorflow/python/trackable/base.py:202, in no_automatic_dependency_tracking.._method_wrapper(self, *args, **kwargs)
200 def _method_wrapper(self, *args, **kwargs):
201 previous_value = getattr(self, "_self_setattr_tracking", True)
--> 202 self._self_setattr_tracking = False # pylint: disable=protected-access
203 try:
204 result = method(self, *args, **kwargs)
[... skipping similar frames: Layer.setattr at line 1352 (327 times), Layer.setattr at line 1353 (327 times), Layer._initialize_tracker at line 307 (327 times), no_automatic_dependency_tracking..wrapper at line 26 (327 times), KerasAutoTrackable.setattr at line 28 (326 times), Model.setattr at line 388 (326 times), Layer.setattr at line 3152 (326 times), no_automatic_dependency_tracking.._method_wrapper at line 202 (326 times), Layer._obj_reference_counts at line 3042 (326 times)]
File /opt/conda/lib/python3.10/site-packages/keras/src/backend/tensorflow/trackable.py:28, in KerasAutoTrackable.setattr(self, name, value)
24 if getattr(self, "_self_setattr_tracking", True):
25 value = sticky_attribute_assignment(
26 trackable=self, value=value, name=name
27 )
---> 28 super().setattr(name, value)
File /opt/conda/lib/python3.10/site-packages/tf_keras/src/engine/training.py:388, in Model.setattr(self, name, value)
381 except AttributeError:
382 raise RuntimeError(
383 "It looks like you are subclassing Model and you "
384 "forgot to call super().init()."
385 " Always start with this line."
386 )
--> 388 super().setattr(name, value)
File /opt/conda/lib/python3.10/site-packages/tf_keras/src/engine/base_layer.py:3152, in Layer.setattr(self, name, value)
3147 # Wraps data structures in Trackable, unwraps NoDependency objects.
3148 value = tf.internal.tracking.sticky_attribute_assignment(
3149 trackable=self, value=value, name=name
3150 )
-> 3152 reference_counts = self._obj_reference_counts
3153 reference_counts[value] = reference_counts.get(value, 0) + 1
3155 # When replacing an existing tf.Variable with a new one, we want to
3156 # check its existing position in the
3157 # self._trainable/non_trainable_variable, so that we can put it back to
3158 # the original position.
File /opt/conda/lib/python3.10/site-packages/tf_keras/src/engine/base_layer.py:3042, in Layer._obj_reference_counts(self)
3039 @Property
3040 def _obj_reference_counts(self):
3041 """A dict counting the number of attributes referencing an object."""
-> 3042 self._maybe_create_attribute(
3043 "_obj_reference_counts_dict",
3044 object_identity.ObjectIdentityDictionary(),
3045 )
3046 return self._obj_reference_counts_dict
File /opt/conda/lib/python3.10/site-packages/tensorflow/python/trackable/base.py:202, in no_automatic_dependency_tracking.._method_wrapper(self, *args, **kwargs)
200 def _method_wrapper(self, *args, **kwargs):
201 previous_value = getattr(self, "_self_setattr_tracking", True)
--> 202 self._self_setattr_tracking = False # pylint: disable=protected-access
203 try:
204 result = method(self, *args, **kwargs)
File /opt/conda/lib/python3.10/site-packages/keras/src/layers/layer.py:1352, in Layer.setattr(self, name, value)
1350 value = self._tracker.track(value)
1351 elif name != "_tracker":
-> 1352 self._initialize_tracker()
1353 return super().setattr(name, value)
File /opt/conda/lib/python3.10/site-packages/keras/src/utils/tracking.py:26, in no_automatic_dependency_tracking..wrapper(*args, **kwargs)
23 @wraps(fn)
24 def wrapper(*args, **kwargs):
25 with DotNotTrackScope():
---> 26 return fn(*args, **kwargs)
File /opt/conda/lib/python3.10/site-packages/keras/src/layers/layer.py:307, in Layer._initialize_tracker(self)
305 metrics = []
306 seed_generators = []
--> 307 self._tracker = tracking.Tracker(
308 {
309 "trainable_variables": (
310 lambda x: isinstance(x, backend.Variable) and x.trainable,
311 trainable_variables,
312 ),
313 "non_trainable_variables": (
314 lambda x: isinstance(x, backend.Variable)
315 and not x.trainable,
316 non_trainable_variables,
317 ),
318 "metrics": (lambda x: isinstance(x, Metric), metrics),
319 "layers": (
320 lambda x: isinstance(x, Layer)
321 and not isinstance(x, Metric),
322 layers,
323 ),
324 "seed_generators": (
325 lambda x: isinstance(x, backend.random.SeedGenerator),
326 seed_generators,
327 ),
328 },
329 exclusions={"non_trainable_variables": ["trainable_variables"]},
330 )
331 if backend.backend() == "tensorflow":
332 # Remove attribute tracking for lists (TF-specific attribute)
333 _self_setattr_tracking = getattr(
334 self, "_self_setattr_tracking", True
335 )
File /opt/conda/lib/python3.10/site-packages/keras/src/layers/layer.py:1353, in Layer.setattr(self, name, value)
1351 elif name != "_tracker":
1352 self._initialize_tracker()
-> 1353 return super().setattr(name, value)
File /opt/conda/lib/python3.10/site-packages/keras/src/backend/tensorflow/trackable.py:25, in KerasAutoTrackable.setattr(self, name, value)
22 pass
24 if getattr(self, "_self_setattr_tracking", True):
---> 25 value = sticky_attribute_assignment(
26 trackable=self, value=value, name=name
27 )
28 super().setattr(name, value)
File /opt/conda/lib/python3.10/site-packages/keras/src/backend/tensorflow/trackable.py:43, in sticky_attribute_assignment(trackable, name, value)
31 def sticky_attribute_assignment(trackable, name, value):
32 """Adds dependencies, called from setattr.
33
34 Args:
(...)
41 The value which should be stored in the attribute.
42 """
---> 43 if isinstance(
44 value, (tracking.TrackedList, tracking.TrackedDict, tracking.TrackedSet)
45 ) and hasattr(trackable, "_tracked"):
46 trackable._tracked.append(name)
47 if not tracking.is_tracking_enabled():
RecursionError: maximum recursion depth exceeded in instancecheck
The text was updated successfully, but these errors were encountered: