Skip to content

Latest commit

 

History

History
90 lines (80 loc) · 2.59 KB

README.md

File metadata and controls

90 lines (80 loc) · 2.59 KB

vhs-data-analysis

This project use spark 3.2 with Scala to:

  1. Consume, clean and enrich VHS events from mongoDB and save the result into parquet file partitioned by codMonth (yyyymm) - Done
  2. Analyze and segment the enriched data to discover unknown patterns among the data. - In progress

How to build and create the jars enrich-vhs-data.jar(1) and analyze-vhs-data.jar(2)

sbt clean compile assembly

Docker is needed to run this project

Go to spark docker directory

cd [PROJECT_PATH]/docker/spark

Build spark docker from Dockerfile:

docker build -t scalac/spark .

Run spark container

sh run

Enter the spark container

sh shell

How to execute locally the vhs-data-enricher module (jar 1)

spark-submit
--class "VHSDataEnricher"
--master local[4]
enrich-vhs-data/target/scala-2.12/enrich-vhs-data.jar
--behavior=[daily | monthly | both]
--mongoUri=[MongoUriHere]
--database=vhs
--collection=events --fromDate=202101 --toDate=202112

How to execute locally the vhs-data-analyzer module (jar 2)

  • Elbow method to determine the best number of cluster for the kMeans algorithm

spark-submit
--class "VHSDataAnalyzer"
--master local[4]
analyze-vhs-data/target/scala-2.12/analyze-vhs-data.jar
--behavior=[daily | monthly]
--mainPath=data/output
--folderName=enriched-data
--gameId=LOVE_COLORS
--fromDate=202101
--toDate=202112
--method=elbow
--fromK=3
--toK=30

  • KMeans method to segment the data in k cluster

spark-submit
--class "VHSDataAnalyzer"
--master local[4]
analyze-vhs-data/target/scala-2.12/analyze-vhs-data.jar
--behavior=[daily | monthly]
--mainPath=data/output
--folderName=enriched-data
--gameId=LOVE_COLORS
--fromDate=202101
--toDate=202112
--method=k-means
--k=6

  • LTV method to calculate the value of users per day

spark-submit
--class "VHSDataAnalyzer"
--master local[4]
analyze-vhs-data/target/scala-2.12/analyze-vhs-data.jar
--behavior=[daily | monthly]
--mainPath=data-models
--folderName=output
--gameId=LOVE_COLORS
--fromDate=202101
--toDate=202112
--method=ltv
--attribute=[user | cluster]

  • Retention method to analyze the retention for all the days of 1 month

spark-submit
--class "VHSDataAnalyzer"
--master local[4]
analyze-vhs-data/target/scala-2.12/analyze-vhs-data.jar
--behavior=daily
--mainPath=data/output
--folderName=enriched-data
--gameId=LOVE_COLORS
--method=retention
--startMonth=202110
--idleTime=0