-
Notifications
You must be signed in to change notification settings - Fork 103
/
Copy pathDigitRecognitionCnnEager.cs
217 lines (179 loc) · 8.03 KB
/
DigitRecognitionCnnEager.cs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
/*****************************************************************************
Copyright 2018 The TensorFlow.NET Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
******************************************************************************/
using System.Linq;
using Tensorflow;
using Tensorflow.Keras.Engine;
using Tensorflow.Keras.Optimizers;
using Tensorflow.NumPy;
using static Tensorflow.Binding;
using static Tensorflow.KerasApi;
namespace TensorFlowNET.Examples;
/// <summary>
/// Build a convolutional neural network with TensorFlow v2.
/// This example is using a low-level approach to better understand all mechanics behind building convolutional neural networks and the training process.
/// https://github.com/aymericdamien/TensorFlow-Examples/blob/master/tensorflow_v2/notebooks/3_NeuralNetworks/convolutional_network_raw.ipynb
/// </summary>
public class DigitRecognitionCnnEager : SciSharpExample, IExample
{
// MNIST dataset parameters.
int num_classes = 10; // total classes (0-9 digits).
// Training parameters.
float learning_rate = 0.001f;
int training_steps = 100;
int batch_size = 32;
int display_step = 10;
// Network parameters.
int conv1_filters = 32; // number of filters for 1st conv layer.
int conv2_filters = 64; // number of filters for 2nd conv layer.
int fc1_units = 1024; // number of neurons for 1st fully-connected layer.
float accuracy_test = 0.0f;
IDatasetV2 train_data;
NDArray x_test, y_test, x_train, y_train;
IVariableV1 wc1, wc2, wd1, wout;
IVariableV1 bc1, bc2, bd1, bout;
public ExampleConfig InitConfig()
=> Config = new ExampleConfig
{
Name = "MNIST CNN (Eager)",
Enabled = true,
IsImportingGraph = false
};
public bool Run()
{
tf.enable_eager_execution();
PrepareData();
Train();
Test();
return accuracy_test >= 0.80;
}
public override void Train()
{
// A random value generator to initialize weights.
var random_normal = tf.initializers.random_normal_initializer();
// Conv Layer 1: 5x5 conv, 1 input, 32 filters (MNIST has 1 color channel only).
wc1 = tf.Variable(random_normal.Apply(new InitializerArgs((5, 5, 1, conv1_filters))));
// Conv Layer 2: 5x5 conv, 32 inputs, 64 filters.
wc2 = tf.Variable(random_normal.Apply(new InitializerArgs((5, 5, conv1_filters, conv2_filters))));
// FC Layer 1: 7*7*64 inputs, 1024 units.
wd1 = tf.Variable(random_normal.Apply(new InitializerArgs((7 * 7 * 64, fc1_units))));
// FC Out Layer: 1024 inputs, 10 units (total number of classes)
wout = tf.Variable(random_normal.Apply(new InitializerArgs((fc1_units, num_classes))));
bc1 = tf.Variable(tf.zeros(conv1_filters));
bc2 = tf.Variable(tf.zeros(conv2_filters));
bd1 = tf.Variable(tf.zeros(fc1_units));
bout = tf.Variable(tf.zeros(num_classes));
// ADAM optimizer.
var optimizer = keras.optimizers.Adam(learning_rate);
// Run training for the given number of steps.
foreach (var (step, (batch_x, batch_y)) in enumerate(train_data, 1))
{
// Run the optimization to update W and b values.
run_optimization(optimizer, batch_x, batch_y);
if (step % display_step == 0)
{
var pred = conv_net(batch_x);
var loss = cross_entropy(pred, batch_y);
var acc = accuracy(pred, batch_y);
print($"step: {step}, loss: {(float)loss}, accuracy: {(float)acc}");
}
}
}
public override void Test()
{
// Test model on validation set.
x_test = x_test["::100"];
y_test = y_test["::100"];
var pred = conv_net(x_test);
accuracy_test = (float)accuracy(pred, y_test);
print($"Test Accuracy: {accuracy_test}");
}
void run_optimization(IOptimizer optimizer, Tensor x, Tensor y)
{
using var g = tf.GradientTape();
var pred = conv_net(x);
var loss = cross_entropy(pred, y);
// Compute gradients.
var trainable_variables = new IVariableV1[] { wc1, wc2, wd1, wout, bc1, bc2, bd1, bout };
var gradients = g.gradient(loss, trainable_variables);
// Update W and b following gradients.
optimizer.apply_gradients(zip(gradients, trainable_variables.Select(x => x as ResourceVariable)));
}
Tensor conv2d(Tensor x, IVariableV1 W, IVariableV1 b, int strides = 1)
{
x = tf.nn.conv2d(x, W.AsTensor(), new int[] { 1, strides, strides, 1 }, padding: "SAME");
x = tf.nn.bias_add(x, b);
return tf.nn.relu(x);
}
/// <summary>
/// MaxPool2D wrapper.
/// </summary>
/// <param name="x"></param>
/// <param name="k"></param>
/// <returns></returns>
Tensor maxpool2d(Tensor x, int k = 2)
{
return tf.nn.max_pool(x, ksize: new[] { 1, k, k, 1 }, strides: new[] { 1, k, k, 1 }, padding: "SAME");
}
Tensor conv_net(Tensor x)
{
// Input shape: [-1, 28, 28, 1]. A batch of 28x28x1 (grayscale) images.
x = tf.reshape(x, (-1, 28, 28, 1));
// Convolution Layer. Output shape: [-1, 28, 28, 32].
var conv1 = conv2d(x, wc1, bc1);
// Max Pooling (down-sampling). Output shape: [-1, 14, 14, 32].
conv1 = maxpool2d(conv1, k: 2);
// Convolution Layer. Output shape: [-1, 14, 14, 64].
var conv2 = conv2d(conv1, wc2, bc2);
// Max Pooling (down-sampling). Output shape: [-1, 7, 7, 64].
conv2 = maxpool2d(conv2, k: 2);
// Reshape conv2 output to fit fully connected layer input, Output shape: [-1, 7*7*64].
var fc1 = tf.reshape(conv2, (-1, wd1.shape.dims[0]));
// Fully connected layer, Output shape: [-1, 1024].
fc1 = tf.add(tf.matmul(fc1, wd1.AsTensor()), bd1.AsTensor());
// Apply ReLU to fc1 output for non-linearity.
fc1 = tf.nn.relu(fc1);
// Fully connected layer, Output shape: [-1, 10].
var output = tf.add(tf.matmul(fc1, wout.AsTensor()), bout.AsTensor());
// Apply softmax to normalize the logits to a probability distribution.
return tf.nn.softmax(output);
}
Tensor cross_entropy(Tensor y_pred, Tensor y_true)
{
// Encode label to a one hot vector.
y_true = tf.one_hot(y_true, depth: num_classes);
// Clip prediction values to avoid log(0) error.
y_pred = tf.clip_by_value(y_pred, 1e-9f, 1.0f);
// Compute cross-entropy.
return tf.reduce_mean(-tf.reduce_sum(y_true * tf.math.log(y_pred)));
}
Tensor accuracy(Tensor y_pred, Tensor y_true)
{
// Predicted class is the index of highest score in prediction vector (i.e. argmax).
var correct_prediction = tf.equal(tf.math.argmax(y_pred, 1), tf.cast(y_true, tf.int64));
return tf.reduce_mean(tf.cast(correct_prediction, tf.float32), axis: -1);
}
public override void PrepareData()
{
((x_train, y_train), (x_test, y_test)) = keras.datasets.mnist.load_data();
// Convert to float32.
// (x_train, x_test) = (np.array(x_train, np.float32), np.array(x_test, np.float32));
// Normalize images value from [0, 255] to [0, 1].
(x_train, x_test) = (x_train / 255.0f, x_test / 255.0f);
train_data = tf.data.Dataset.from_tensor_slices(x_train, y_train);
train_data = train_data.repeat()
.shuffle(5000)
.batch(batch_size)
.prefetch(1)
.take(training_steps);
}
}