-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathcodemeta.json
130 lines (130 loc) · 5.31 KB
/
codemeta.json
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
{
"@context": "https://doi.org/10.5063/schema/codemeta-2.0",
"@type": "SoftwareSourceCode",
"identifier": "dfms",
"description": "Efficient estimation of Dynamic Factor Models using the Expectation Maximization (EM) algorithm or Two-Step (2S) estimation, on datasets with missing data. The implementation follows advances in the econometric literature: estimation can be done either by running the Kalman Filter and Smoother once with initial values from PCA - following Doz, Giannone and Reichlin (2011) (2S) - or via iterated Kalman Filtering and Smoothing until EM convergence - following Doz, Giannone and Reichlin (2012) - or using the adapted EM algorithm of Banbura and Modugno (2014), allowing estimation with arbitrary patterns of missing data. The implementation makes heavy use of the Armadillo C++ library and the collapse package, providing for particularly speedy estimation. A comprehensive set of methods supports interpretation/visualization of the model and forecasting. Information criteria to choose the number of factors are also provided - following Bai and Ng (2002). --- Key References: --- Doz, C., Giannone, D., & Reichlin, L. (2011). A two-step estimator for large approximate dynamic factor models based on Kalman filtering. Journal of Econometrics, 164(1), 188-205. Doz, C., Giannone, D., & Reichlin, L. (2012). A quasi-maximum likelihood approach for large, approximate dynamic factor models. Review of economics and statistics, 94(4), 1014-1024. Banbura, M., & Modugno, M. (2014). Maximum likelihood estimation of factor models on datasets with arbitrary pattern of missing data. Journal of Applied Econometrics, 29(1), 133-160.",
"name": "dfms: Dynamic Factor Models",
"codeRepository": "https://github.com/SebKrantz/dfms",
"issueTracker": "https://github.com/SebKrantz/dfms/issues",
"license": "https://spdx.org/licenses/GPL-3.0",
"version": "0.1.1",
"programmingLanguage": {
"@type": "ComputerLanguage",
"name": "R",
"url": "https://r-project.org"
},
"runtimePlatform": "R version 4.1.1 (2021-08-10)",
"author": [
{
"@type": "Person",
"givenName": "Sebastian",
"familyName": "Krantz",
"email": "[email protected]"
},
{
"@type": "Person",
"givenName": "Rytis",
"familyName": "Bagdziunas"
}
],
"maintainer": [
{
"@type": "Person",
"givenName": "Sebastian",
"familyName": "Krantz",
"email": "[email protected]"
}
],
"softwareSuggestions": [
{
"@type": "SoftwareApplication",
"identifier": "xts",
"name": "xts",
"provider": {
"@id": "https://cran.r-project.org",
"@type": "Organization",
"name": "Comprehensive R Archive Network (CRAN)",
"url": "https://cran.r-project.org"
},
"sameAs": "https://CRAN.R-project.org/package=xts"
},
{
"@type": "SoftwareApplication",
"identifier": "vars",
"name": "vars",
"provider": {
"@id": "https://cran.r-project.org",
"@type": "Organization",
"name": "Comprehensive R Archive Network (CRAN)",
"url": "https://cran.r-project.org"
},
"sameAs": "https://CRAN.R-project.org/package=vars"
},
{
"@type": "SoftwareApplication",
"identifier": "magrittr",
"name": "magrittr",
"provider": {
"@id": "https://cran.r-project.org",
"@type": "Organization",
"name": "Comprehensive R Archive Network (CRAN)",
"url": "https://cran.r-project.org"
},
"sameAs": "https://CRAN.R-project.org/package=magrittr"
},
{
"@type": "SoftwareApplication",
"identifier": "testthat",
"name": "testthat",
"version": ">= 3.0.0",
"provider": {
"@id": "https://cran.r-project.org",
"@type": "Organization",
"name": "Comprehensive R Archive Network (CRAN)",
"url": "https://cran.r-project.org"
},
"sameAs": "https://CRAN.R-project.org/package=testthat"
}
],
"softwareRequirements": {
"1": {
"@type": "SoftwareApplication",
"identifier": "R",
"name": "R",
"version": ">= 3.0.0"
},
"2": {
"@type": "SoftwareApplication",
"identifier": "Rcpp",
"name": "Rcpp",
"version": ">= 1.0.1",
"provider": {
"@id": "https://cran.r-project.org",
"@type": "Organization",
"name": "Comprehensive R Archive Network (CRAN)",
"url": "https://cran.r-project.org"
},
"sameAs": "https://CRAN.R-project.org/package=Rcpp"
},
"3": {
"@type": "SoftwareApplication",
"identifier": "collapse",
"name": "collapse",
"version": ">= 1.8.0",
"provider": {
"@id": "https://cran.r-project.org",
"@type": "Organization",
"name": "Comprehensive R Archive Network (CRAN)",
"url": "https://cran.r-project.org"
},
"sameAs": "https://CRAN.R-project.org/package=collapse"
},
"SystemRequirements": null
},
"fileSize": "7022.375KB",
"relatedLink": "https://sebkrantz.github.io/dfms/",
"releaseNotes": "https://github.com/SebKrantz/dfms/blob/master/NEWS.md",
"readme": "https://github.com/SebKrantz/dfms/blob/main/README.md",
"contIntegration": "https://github.com/SebKrantz/dfms/actions",
"keywords": ["dynamic-factor-models", "rstats", "time-series"]
}