-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinfer.py
89 lines (74 loc) · 2.33 KB
/
infer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
import os
import cv2
import pickle
import argparse
import numpy as np
from PIL import Image
import oneflow as flow
import oneflow.nn as nn
from utils import model_dict, val_transforms
def get_args():
parser = argparse.ArgumentParser(
description="OneFlow flowvision inference demo",
epilog="Example of use",
add_help=True,
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
)
parser.add_argument(
"--model",
type=str,
default="resnet50",
help=f"Supported models: {', '.join(model_dict.keys())}",
)
parser.add_argument(
"--snapshot",
type=str,
default="output/snapshot_epoch15_acc0.8573913043478261",
help=f"path to snapshot",
)
parser.add_argument(
"--filepath",
type=str,
default="val/n10565667/ILSVRC2012_val_00000255.JPEG",
help="path to an image file",
)
parser.add_argument(
"--classes_file",
type=str,
default="output/classes.pkl",
help="path to classes file",
)
args = parser.parse_args()
return args
def read_and_transform(filepath):
# https://github.com/pytorch/vision/blob/main/torchvision/datasets/folder.py#L244
with open(filepath, "rb") as f:
img = Image.open(f)
img = img.convert("RGB")
return val_transforms(img).unsqueeze(0)
if __name__ == "__main__":
args = get_args()
print(args)
device = "cuda" if flow.cuda.is_available() else "cpu"
# 加载类别列表
with open(args.classes_file, "rb") as f:
classes = pickle.load(f)
num_classes = len(classes)
# 加载预训练模型
assert args.model in model_dict
model = model_dict[args.model](pretrained=False)
# 设置类别数, 注意:最后一层必须是`fc`
assert num_classes > 0
model.fc = nn.Linear(model.fc.in_features, num_classes)
# 导入模型
assert args.snapshot
print(f"Loading model from {args.snapshot}")
state_dict = flow.load(args.snapshot)
model.load_state_dict(state_dict, strict=True)
model.to(device)
model.eval()
# 加载训练数据
x = read_and_transform(args.filepath)
pred = model(x.to(device))
pred_index = flow.argmax(pred, 1).numpy()[0]
print(f"prediction index:{pred_index}, prediction class: {classes[pred_index]}")