-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathVisualizor.py
153 lines (127 loc) · 4.23 KB
/
Visualizor.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
import math
import pandas as pd
import numpy as np
import flask
import dash
import dash_core_components as dcc
import dash_html_components as html
import plotly.graph_objs as go
import plotly.express as px
from dash.dependencies import Input, Output, State
from homeNavbar import Navbar
import sys
nav = Navbar()
output_piegraph = html.Div(className = "output_piegraph",id = 'output_piegraph',
children = [],
)
output_bargraph = html.Div(className = "output_bargraph",id = 'output_bargraph',
children = [],
)
output_linegraph = html.Div(className = "output_linegraph",id = 'output_linegraph',
children = [],
)
header = html.H1(
'Select the FEATURE of Campaign to see Insights!!!!'
)
def Campaign_Visualizor(feature_dropdown):
layout = html.Div([
nav,
header,
feature_dropdown,
output_piegraph,
output_bargraph,
output_linegraph
])
return layout
def visualize_bargraph(feature):
if feature is not None:
marketingData_grouped = fetchFeaturesAPI(feature)
marketingData = marketingData_grouped.to_frame()
fig = go.Figure(data=[
go.Bar(name='CONFIRMED',x= marketingData.index,y=marketingData[feature]),
])
fig.update_layout(barmode='stack')
fig.layout.plot_bgcolor = "#1A1C23";
fig.layout.paper_bgcolor = "#1A1C23";
fig.layout.autosize= True;
fig.update_layout(
title=feature+ " for Ad Campaign",
xaxis_title="Ad Campaign",
yaxis_title="Audience " +feature,
font=dict(
color="#DCF7F7"
)
)
fig2 = dcc.Graph(
figure=fig
)
return fig2
def visualize_linegraph(feature):
if feature is not None:
marketingData_grouped = fetchFeaturesAPI(feature)
marketingData = marketingData_grouped.to_frame()
fig = go.Figure()
fig.add_trace(go.Scatter(
x=marketingData.index,
y=marketingData[feature],
line_color='#0557EB',
name='Confirmed',
))
fig.update_traces(mode='lines')
fig.layout.plot_bgcolor = "#1A1C23";
fig.layout.paper_bgcolor = "#1A1C23";
fig.layout.autosize= True;
fig.update_layout(
xaxis_title="AD CAMPAIGN",
yaxis_title="Audience " +feature,
font=dict(
color="#DCF7F7"
)
)
fig2 = dcc.Graph(
figure=fig
)
return fig2
def visualize_piegraph(feature):
if feature is not None:
marketingData_grouped = fetchFeaturesAPI(feature)
print (feature)
marketingData = marketingData_grouped.to_frame()
print (marketingData)
data = [
{
'values': marketingData[feature],
'type': 'pie',
'labels': marketingData.index
},
]
fig = dcc.Graph(
id='graph',
figure={
'data': data,
'layout': {
"paper_bgcolor": "#1A1C23",
"plot_bgcolor": "#1A1C23",
"autosize": True,
"title": feature+ " for Ad Campaign",
"font":dict(
color="#DCF7F7"
)
}
}
)
return fig
def fetchFeaturesAPI(feature):
marketingData = pd.read_excel("marketingTeamData.xlsx")
marketingData_grouped = marketingData.groupby(['Campaign ID'])[feature].sum()
return marketingData_grouped;
def featurerender():
dis = ['Reach','Impressions','Frequency','Clicks','Unique Clicks','Unique Link Clicks (ULC)','Click-Through Rate (CTR)','Unique Click-Through Rate (Unique CTR)',
'Amount Spent in INR','Cost Per Click (CPC)','Cost per Result (CPR)']
options = [{'label':x, 'value': x} for x in dis]
feature_dropdown = html.Div(dcc.Dropdown(
id = 'feature_dropdown',
options = options,
placeholder="Select FEATURE"
))
return feature_dropdown