forked from Sygil-Dev/muse-maskgit-pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_muse_vae.py
614 lines (578 loc) · 19.9 KB
/
train_muse_vae.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
import argparse
import glob
import os
import re
from dataclasses import dataclass
from typing import Optional, Union
import wandb
from accelerate.utils import ProjectConfiguration
from datasets import load_dataset
from omegaconf import OmegaConf
from muse_maskgit_pytorch import (
VQGanVAE,
VQGanVAETaming,
VQGanVAETrainer,
get_accelerator,
)
from muse_maskgit_pytorch.dataset import (
ImageDataset,
get_dataset_from_dataroot,
split_dataset_into_dataloaders,
)
# disable bitsandbytes welcome message.
os.environ["BITSANDBYTES_NOWELCOME"] = "1"
parser = argparse.ArgumentParser()
parser.add_argument("--webdataset", type=str, default=None, help="Path to webdataset if using one.")
parser.add_argument(
"--only_save_last_checkpoint",
action="store_true",
help="Only save last checkpoint.",
)
parser.add_argument(
"--validation_image_scale",
default=1,
type=float,
help="Factor by which to scale the validation images.",
)
parser.add_argument(
"--no_center_crop",
action="store_true",
help="Don't do center crop.",
)
parser.add_argument(
"--no_flip",
action="store_true",
help="Don't flip image.",
)
parser.add_argument(
"--random_crop",
action="store_true",
help="Crop the images at random locations instead of cropping from the center.",
)
parser.add_argument(
"--dataset_save_path",
type=str,
default="dataset",
help="Path to save the dataset if you are making one from a directory",
)
parser.add_argument(
"--clear_previous_experiments",
action="store_true",
help="Whether to clear previous experiments.",
)
parser.add_argument("--max_grad_norm", type=float, default=None, help="Max gradient norm.")
parser.add_argument(
"--discr_max_grad_norm",
type=float,
default=None,
help="Max gradient norm for discriminator.",
)
parser.add_argument("--seed", type=int, default=42, help="Seed.")
parser.add_argument("--valid_frac", type=float, default=0.05, help="validation fraction.")
parser.add_argument("--use_ema", action="store_true", help="Whether to use ema.")
parser.add_argument("--ema_beta", type=float, default=0.995, help="Ema beta.")
parser.add_argument("--ema_update_after_step", type=int, default=1, help="Ema update after step.")
parser.add_argument(
"--ema_update_every",
type=int,
default=1,
help="Ema update every this number of steps.",
)
parser.add_argument(
"--apply_grad_penalty_every",
type=int,
default=4,
help="Apply gradient penalty every this number of steps.",
)
parser.add_argument(
"--image_column",
type=str,
default="image",
help="The column of the dataset containing an image.",
)
parser.add_argument(
"--caption_column",
type=str,
default="caption",
help="The column of the dataset containing a caption or a list of captions.",
)
parser.add_argument(
"--log_with",
type=str,
default="wandb",
help=(
'The integration to report the results and logs to. Supported platforms are `"tensorboard"`'
' (default), `"wandb"` and `"comet_ml"`. Use `"all"` to report to all integrations.'
),
)
parser.add_argument(
"--project_name",
type=str,
default="muse_vae",
help=("Name to use for the project to identify it when saved to a tracker such as wandb or tensorboard."),
)
parser.add_argument(
"--run_name",
type=str,
default=None,
help=(
"Name to use for the run to identify it when saved to a tracker such"
" as wandb or tensorboard. If not specified a random one will be generated."
),
)
parser.add_argument(
"--wandb_user",
type=str,
default=None,
help=(
"Specify the name for the user or the organization in which the project will be saved when using wand."
),
)
parser.add_argument(
"--mixed_precision",
type=str,
default="no",
choices=["no", "fp8", "fp16", "bf16"],
help="Precision to train on.",
)
parser.add_argument(
"--use_8bit_adam",
action="store_true",
help="Whether to use the 8bit adam optimiser",
)
parser.add_argument(
"--results_dir",
type=str,
default="results",
help="Path to save the training samples and checkpoints",
)
parser.add_argument(
"--logging_dir",
type=str,
default=None,
help="Path to log the losses and LR",
)
# vae_trainer args
parser.add_argument(
"--dataset_name",
type=str,
default=None,
help="Name of the huggingface dataset used.",
)
parser.add_argument(
"--hf_split_name",
type=str,
default="train",
help="Subset or split to use from the dataset when using a dataset form HuggingFace.",
)
parser.add_argument(
"--streaming",
action="store_true",
help="Whether to stream the huggingface dataset",
)
parser.add_argument(
"--train_data_dir",
type=str,
default=None,
help="Dataset folder where your input images for training are.",
)
parser.add_argument(
"--num_train_steps",
type=int,
default=-1,
help="Total number of steps to train for. eg. 50000. | Use only if you want to stop training early",
)
parser.add_argument(
"--num_epochs",
type=int,
default=5,
help="Total number of epochs to train for. eg. 5.",
)
parser.add_argument("--dim", type=int, default=128, help="Model dimension.")
parser.add_argument("--batch_size", type=int, default=1, help="Batch Size.")
parser.add_argument("--lr", type=float, default=1e-5, help="Learning Rate.")
parser.add_argument(
"--gradient_accumulation_steps",
type=int,
default=1,
help="Gradient Accumulation.",
)
parser.add_argument(
"--save_results_every",
type=int,
default=100,
help="Save results every this number of steps.",
)
parser.add_argument(
"--save_model_every",
type=int,
default=500,
help="Save the model every this number of steps.",
)
parser.add_argument(
"--checkpoint_limit",
type=int,
default=None,
help="Keep only X number of checkpoints and delete the older ones.",
)
parser.add_argument("--vq_codebook_size", type=int, default=256, help="Image Size.")
parser.add_argument("--vq_codebook_dim", type=int, default=256, help="VQ Codebook dimensions.")
parser.add_argument(
"--channels", type=int, default=3, help="Number of channels for the VAE. Use 3 for RGB or 4 for RGBA."
)
parser.add_argument("--layers", type=int, default=4, help="Number of layers for the VAE.")
parser.add_argument("--discr_layers", type=int, default=4, help="Number of layers for the VAE discriminator.")
parser.add_argument(
"--image_size",
type=int,
default=256,
help="Image size. You may want to start with small images, and then curriculum learn to larger ones, but because the vae is all convolution, it should generalize to 512 (as in paper) without training on it",
)
parser.add_argument(
"--lr_scheduler",
type=str,
default="constant",
help='The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial", "constant", "constant_with_warmup"]',
)
parser.add_argument(
"--scheduler_power",
type=float,
default=1.0,
help="Controls the power of the polynomial decay schedule used by the CosineScheduleWithWarmup scheduler. "
"It determines the rate at which the learning rate decreases during the schedule.",
)
parser.add_argument(
"--lr_warmup_steps",
type=int,
default=0,
help="Number of steps for the warmup in the lr scheduler.",
)
parser.add_argument(
"--num_cycles",
type=int,
default=1,
help="Number of cycles for the lr scheduler.",
)
parser.add_argument(
"--resume_path",
type=str,
default=None,
help="Path to the last saved checkpoint. 'results/vae.steps.pt'",
)
parser.add_argument(
"--weight_decay",
type=float,
default=0.0,
help="Optimizer weight_decay to use. Default: 0.0",
)
parser.add_argument(
"--taming_model_path",
type=str,
default=None,
help="path to your trained VQGAN weights. This should be a .ckpt file. (only valid when taming option is enabled)",
)
parser.add_argument(
"--taming_config_path",
type=str,
default=None,
help="path to your trained VQGAN config. This should be a .yaml file. (only valid when taming option is enabled)",
)
parser.add_argument(
"--optimizer",
type=str,
default="Lion",
help="Optimizer to use. Choose between: ['Adam', 'AdamW','Lion']. Default: Lion",
)
parser.add_argument(
"--cache_path",
type=str,
default=None,
help="The path to cache huggingface models",
)
parser.add_argument(
"--no_cache",
action="store_true",
help="Do not save the dataset pyarrow cache/files to disk to save disk space and reduce the time it takes to launch the training.",
)
parser.add_argument(
"--latest_checkpoint",
action="store_true",
help="Whether to use the latest checkpoint",
)
parser.add_argument(
"--do_not_save_config",
action="store_true",
default=False,
help="Generate example YAML configuration file",
)
parser.add_argument(
"--use_l2_recon_loss",
action="store_true",
help="Use F.mse_loss instead of F.l1_loss.",
)
@dataclass
class Arguments:
total_params: Optional[int] = None
only_save_last_checkpoint: bool = False
validation_image_scale: float = 1.0
no_center_crop: bool = False
no_flip: bool = False
random_crop: bool = False
dataset_save_path: Optional[str] = None
clear_previous_experiments: bool = False
max_grad_norm: Optional[float] = None
discr_max_grad_norm: Optional[float] = None
num_tokens: int = 256
seq_len: int = 1024
seed: int = 42
valid_frac: float = 0.05
use_ema: bool = False
ema_beta: float = 0.995
ema_update_after_step: int = 1
ema_update_every: int = 1
apply_grad_penalty_every: int = 4
image_column: str = "image"
caption_column: str = "caption"
log_with: str = "wandb"
mixed_precision: str = "no"
use_8bit_adam: bool = False
results_dir: str = "results"
logging_dir: Optional[str] = None
resume_path: Optional[str] = None
dataset_name: Optional[str] = None
streaming: bool = False
train_data_dir: Optional[str] = None
num_train_steps: int = -1
num_epochs: int = 5
dim: int = 128
batch_size: int = 512
lr: float = 1e-5
gradient_accumulation_steps: int = 1
save_results_every: int = 100
save_model_every: int = 500
checkpoint_limit: Union[int, str] = None
vq_codebook_size: int = 256
vq_codebook_dim: int = 256
cond_drop_prob: float = 0.5
image_size: int = 256
lr_scheduler: str = "constant"
scheduler_power: float = 1.0
lr_warmup_steps: int = 0
num_cycles: int = 1
taming_model_path: Optional[str] = None
taming_config_path: Optional[str] = None
optimizer: str = "Lion"
weight_decay: float = 0.0
cache_path: Optional[str] = None
no_cache: bool = False
latest_checkpoint: bool = False
do_not_save_config: bool = False
use_l2_recon_loss: bool = False
debug: bool = False
config_path: Optional[str] = None
def preprocess_webdataset(args, image):
return {args.image_column: image}
def main():
args = parser.parse_args(namespace=Arguments())
if args.config_path:
print("Using config file and ignoring CLI args")
try:
conf = OmegaConf.load(args.config_path)
conf_keys = conf.keys()
args_to_convert = vars(args)
for key in conf_keys:
try:
args_to_convert[key] = conf[key]
except KeyError:
print(f"Error parsing config - {key}: {conf[key]} | Using default or parsed")
except FileNotFoundError:
print("Could not find config, using default and parsed values...")
project_config = ProjectConfiguration(
project_dir=args.logging_dir if args.logging_dir else os.path.join(args.results_dir, "logs"),
total_limit=args.checkpoint_limit,
automatic_checkpoint_naming=True,
)
accelerator = get_accelerator(
log_with=args.log_with,
gradient_accumulation_steps=args.gradient_accumulation_steps,
mixed_precision=args.mixed_precision,
project_config=project_config,
even_batches=True,
)
if accelerator.is_main_process:
accelerator.init_trackers(
args.project_name,
config=vars(args),
init_kwargs={
"wandb": {
"entity": f"{args.wandb_user or wandb.api.default_entity}",
"name": args.run_name,
},
},
)
if args.webdataset is not None:
import webdataset as wds
dataset = wds.WebDataset(args.webdataset).shuffle(1000).decode("rgb").to_tuple("png")
dataset = dataset.map(lambda image: preprocess_webdataset(args, image))
elif args.train_data_dir:
dataset = get_dataset_from_dataroot(
args.train_data_dir,
image_column=args.image_column,
caption_column=args.caption_column,
save_path=args.dataset_save_path,
save=not args.no_cache,
)
elif args.dataset_name:
if args.cache_path:
dataset = load_dataset(args.dataset_name, streaming=args.streaming, cache_dir=args.cache_path)[
"train"
]
else:
dataset = load_dataset(args.dataset_name, streaming=args.streaming, cache_dir=args.cache_path)[
"train"
]
if args.streaming:
if dataset.info.dataset_size is None:
print("Dataset doesn't support streaming, disabling streaming")
args.streaming = False
if args.cache_path:
dataset = load_dataset(args.dataset_name, cache_dir=args.cache_path)[args.hf_split_name]
else:
dataset = load_dataset(args.dataset_name)[args.hf_split_name]
if args.resume_path is not None and len(args.resume_path) > 1:
load = True
accelerator.print(f"Using Muse VQGanVAE, loading from {args.resume_path}")
vae = VQGanVAE(
dim=args.dim,
vq_codebook_dim=args.vq_codebook_dim,
vq_codebook_size=args.vq_codebook_size,
l2_recon_loss=args.use_l2_recon_loss,
channels=args.channels,
layers=args.layers,
discr_layers=args.discr_layers,
accelerator=accelerator,
)
if args.latest_checkpoint:
accelerator.print("Finding latest checkpoint...")
orig_vae_path = args.resume_path
if os.path.isfile(args.resume_path) or ".pt" in args.resume_path:
# If args.vae_path is a file, split it into directory and filename
args.resume_path, _ = os.path.split(args.resume_path)
checkpoint_files = glob.glob(os.path.join(args.resume_path, "vae.*.pt"))
if checkpoint_files:
latest_checkpoint_file = max(
checkpoint_files, key=lambda x: int(re.search(r"vae\.(\d+)\.pt", x).group(1))
)
# Check if latest checkpoint is empty or unreadable
if os.path.getsize(latest_checkpoint_file) == 0 or not os.access(
latest_checkpoint_file, os.R_OK
):
accelerator.print(
f"Warning: latest checkpoint {latest_checkpoint_file} is empty or unreadable."
)
if len(checkpoint_files) > 1:
# Use the second last checkpoint as a fallback
latest_checkpoint_file = max(
checkpoint_files[:-1], key=lambda x: int(re.search(r"vae\.(\d+)\.pt", x).group(1))
)
accelerator.print("Using second last checkpoint: ", latest_checkpoint_file)
else:
accelerator.print("No usable checkpoint found.")
load = False
elif latest_checkpoint_file != orig_vae_path:
accelerator.print("Resuming VAE from latest checkpoint: ", latest_checkpoint_file)
else:
accelerator.print("Using checkpoint specified in vae_path: ", orig_vae_path)
args.resume_path = latest_checkpoint_file
else:
accelerator.print("No checkpoints found in directory: ", args.resume_path)
load = False
else:
accelerator.print("Resuming VAE from: ", args.resume_path)
if load:
vae.load(args.resume_path, map="cpu")
resume_from_parts = args.resume_path.split(".")
for i in range(len(resume_from_parts) - 1, -1, -1):
if resume_from_parts[i].isdigit():
current_step = int(resume_from_parts[i])
accelerator.print(f"Found step {current_step} for the VAE model.")
break
if current_step == 0:
accelerator.print("No step found for the VAE model.")
else:
accelerator.print("No step found for the VAE model.")
current_step = 0
elif args.taming_model_path is not None and args.taming_config_path is not None:
print(f"Using Taming VQGanVAE, loading from {args.taming_model_path}")
vae = VQGanVAETaming(
vqgan_model_path=args.taming_model_path,
vqgan_config_path=args.taming_config_path,
accelerator=accelerator,
)
args.num_tokens = vae.codebook_size
args.seq_len = vae.get_encoded_fmap_size(args.image_size) ** 2
else:
print("Initialising empty VAE")
vae = VQGanVAE(
dim=args.dim,
vq_codebook_dim=args.vq_codebook_dim,
vq_codebook_size=args.vq_codebook_size,
channels=args.channels,
layers=args.layers,
discr_layers=args.discr_layers,
accelerator=accelerator,
)
current_step = 0
# Use the parameters() method to get an iterator over all the learnable parameters of the model
total_params = sum(p.numel() for p in vae.parameters())
args.total_params = total_params
print(f"Total number of parameters: {format(total_params, ',d')}")
dataset = ImageDataset(
dataset,
args.image_size,
image_column=args.image_column,
center_crop=not args.no_center_crop,
flip=not args.no_flip,
stream=args.streaming,
random_crop=args.random_crop,
alpha_channel=False if args.channels == 3 else True,
)
# dataloader
dataloader, validation_dataloader = split_dataset_into_dataloaders(
dataset, args.valid_frac, args.seed, args.batch_size
)
trainer = VQGanVAETrainer(
vae,
dataloader,
validation_dataloader,
accelerator,
current_step=current_step + 1 if current_step != 0 else current_step,
num_train_steps=args.num_train_steps,
lr=args.lr,
lr_scheduler_type=args.lr_scheduler,
lr_warmup_steps=args.lr_warmup_steps,
max_grad_norm=args.max_grad_norm,
discr_max_grad_norm=args.discr_max_grad_norm,
save_results_every=args.save_results_every,
save_model_every=args.save_model_every,
results_dir=args.results_dir,
logging_dir=args.logging_dir if args.logging_dir else os.path.join(args.results_dir, "logs"),
use_ema=args.use_ema,
ema_beta=args.ema_beta,
ema_update_after_step=args.ema_update_after_step,
ema_update_every=args.ema_update_every,
apply_grad_penalty_every=args.apply_grad_penalty_every,
gradient_accumulation_steps=args.gradient_accumulation_steps,
clear_previous_experiments=args.clear_previous_experiments,
validation_image_scale=args.validation_image_scale,
only_save_last_checkpoint=args.only_save_last_checkpoint,
optimizer=args.optimizer,
use_8bit_adam=args.use_8bit_adam,
num_cycles=args.num_cycles,
scheduler_power=args.scheduler_power,
num_epochs=args.num_epochs,
args=args,
)
trainer.train()
if __name__ == "__main__":
main()