forked from syf0122/brain_state_pred
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
130 lines (115 loc) · 4.03 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
# Model adapted from the following link
# https://towardsdatascience.com/how-to-make-a-pytorch-transformer-for-time-series-forecasting-69e073d4061e
# for the following paper
# https://arxiv.org/abs/2001.08317
import torch
import torch.nn as nn
from torch import nn, Tensor
import torch.optim as optim
import torch.nn.functional as F
import math
import numpy as np
class PositionalEncoder(nn.Module):
def __init__(
self,
dropout: float=0.1,
max_seq_len: int=5000,
d_model: int=512,
batch_first: bool=True
):
super().__init__()
self.d_model = d_model
self.dropout = nn.Dropout(p=dropout)
self.batch_first = batch_first
self.x_dim = 1 if batch_first else 0
# copy pasted from PyTorch tutorial
position = torch.arange(max_seq_len).unsqueeze(1)
div_term = torch.exp(torch.arange(0, d_model, 2) * (-math.log(10000.0) / d_model))
pe = torch.zeros(max_seq_len, 1, d_model)
pe[:, 0, 0::2] = torch.sin(position * div_term)
pe[:, 0, 1::2] = torch.cos(position * div_term)
self.register_buffer('pe', pe)
def forward(self, x: Tensor) -> Tensor:
if self.batch_first:
x = x + self.pe[:x.size(self.x_dim)].squeeze().unsqueeze(0)
else:
x = x + self.pe[:x.size(self.x_dim)]
return self.dropout(x)
class TimeSeriesTransformer(nn.Module):
def __init__(self,
input_size: int,
dec_seq_len: int,
batch_first: bool=True,
out_seq_len: int=58,
max_seq_len: int=5000,
dim_val: int=512,
n_encoder_layers: int=4,
n_decoder_layers: int=4,
n_heads: int=8,
dropout_encoder: float=0.2,
dropout_decoder: float=0.2,
dropout_pos_enc: float=0.1,
dim_feedforward_encoder: int=2048,
dim_feedforward_decoder: int=2048,
num_predicted_features: int=1
):
super().__init__()
self.dec_seq_len = dec_seq_len
#------ ENCODER ------#
# Creating the three linear layers needed for the model
self.encoder_input_layer = nn.Linear(
in_features=input_size,
out_features=dim_val
)
self.positional_encoding_layer = PositionalEncoder(
d_model=dim_val,
dropout=dropout_pos_enc,
batch_first=batch_first
)
encoder_layer = nn.TransformerEncoderLayer(
d_model=dim_val,
nhead=n_heads,
dim_feedforward=dim_feedforward_encoder,
dropout=dropout_encoder,
batch_first=batch_first
)
self.encoder = nn.TransformerEncoder(
encoder_layer=encoder_layer,
num_layers=n_encoder_layers,
norm=None
)
#------ DECODER ------#
self.decoder_input_layer = nn.Linear(
in_features=num_predicted_features,
out_features=dim_val
)
decoder_layer = nn.TransformerDecoderLayer(
d_model=dim_val,
nhead=n_heads,
dim_feedforward=dim_feedforward_decoder,
dropout=dropout_decoder,
batch_first=batch_first
)
self.decoder = nn.TransformerDecoder(
decoder_layer=decoder_layer,
num_layers=n_decoder_layers,
norm=None
)
self.linear_mapping = nn.Linear(
in_features=dim_val,
out_features=num_predicted_features
)
def forward(self, src: Tensor, tgt: Tensor, src_mask: Tensor=None,
tgt_mask: Tensor=None) -> Tensor:
src = self.encoder_input_layer(src)
src = self.positional_encoding_layer(src)
src = self.encoder(src=src)
decoder_output = self.decoder_input_layer(tgt)
decoder_output = self.decoder(
tgt=decoder_output,
memory=src,
tgt_mask=tgt_mask,
memory_mask=src_mask
)
decoder_output = self.linear_mapping(decoder_output)
return decoder_output