-
Notifications
You must be signed in to change notification settings - Fork 13
/
planRRTDubins.m
369 lines (312 loc) · 10.3 KB
/
planRRTDubins.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
%% pathRRT
%% - create a path from a start node to an end node
%% using the RRT algorithm.
%% - RRT = Rapidly-exploring Random Tree
%%
%% Last Modified - 6/8/2006 - R. Beard
%% - 4/15/2010 - R. Beard
function path_out=planRRTDubins(wpp_start, wpp_end, R, map)
% standard length of path segments
segmentLength = 3*R;
% desired down position is down position of end node
pd = wpp_end(3);
chi_start = wpp_start(4);
chi_end = wpp_end(4);
% specify start and end nodes from wpp_start and wpp_end
start_node = [wpp_start(1), wpp_start(2), pd, chi_start, 0, 0, 0];
end_node = [wpp_end(1), wpp_end(2), pd, chi_end, 0, 0, 0];
% format: [N, E, D, chi, cost, parent_idx, flag_connect_to_goal]
% establish tree starting with the start node
tree = start_node;
% check to see if start_node connects directly to end_node
if ( (norm(start_node(1:3)-end_node(1:3))<segmentLength )...
&(collision(start_node,end_node,map, R, pd)==0) )
path = [start_node; end_node];
else
numPaths = 0;
while numPaths<3,
[tree,flag] = extendTree(tree,end_node,segmentLength,map,pd,chi_end,R);
numPaths = numPaths + flag;
end
end
% find path with minimum cost to end_node
path = findMinimumPath(tree,end_node);
path_out = smoothPath(path,map, R, pd);
plotmap(map,path,path_out,tree);
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% generateRandomNode
%% create a random node (initialize)
function node=generateRandomNode(map,pd,chi)
% randomly pick configuration
pn = map.width*rand;
pe = map.width*rand;
pd = pd; % constant altitute paths
cost = 0;
node = [pn, pe, pd, chi, cost, 0, 0];
% format: [N, E, D, chi, cost, parent_idx, flag_connect_to_goal]
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% collision
%% check to see if a node is in collsion with obstacles
function collision_flag = collision(start_node, end_node, map, R, pd)
collision_flag = 0;
dubinspath = dubinsParameters(start_node, end_node, R);
[X,Y,Z] = pointsAlongDubinsPath(dubinspath, 0.1, pd);
% [X,Y,Z] = pointsAlongPath(start_node, end_node, 0.1);
for i = 1:length(X),
if Z(i) >= downAtNE(map, X(i), Y(i)),
collision_flag = 1;
end
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% pointsAlongPath
%% Find points along straight-line path separted by Del (to be used in
%% collision detection)
function [X,Y,Z] = pointsAlongPath(start_node, end_node, Del)
X = [start_node(1)];
Y = [start_node(2)];
Z = [start_node(3)];
q = [end_node(1:3)-start_node(1:3)];
L = norm(q);
q = q/L;
w = start_node(1:3);
for i=2:floor(L/Del),
w = w + Del*q;
X = [X, w(1)];
Y = [Y, w(2)];
Z = [Z, w(3)];
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% pointsAlongDubinsPath
%% Find points along Dubin's path separted by Del (to be used in
%% collision detection)
function [X,Y,Z] = pointsAlongDubinsPath(dubinspath,Del, pd)
% points along start circle
th1 = mod(atan2(dubinspath.ps(2)-dubinspath.cs(2),dubinspath.ps(1)-dubinspath.cs(1)),2*pi);
th2 = mod(atan2(dubinspath.w1(2)-dubinspath.cs(2),dubinspath.w1(1)-dubinspath.cs(1)),2*pi);
if dubinspath.lams>0,
if th1>=th2,
th = [th1:Del:2*pi,0:Del:th2];
else
th = [th1:Del:th2];
end
else
if th1<=th2,
th = [th1:-Del:0,2*pi:-Del:th2];
else
th = [th1:-Del:th2];
end
end
X = [];
Y = [];
Z = [];
for i=1:length(th),
X = [X; dubinspath.cs(1)+dubinspath.R*cos(th(i))];
Y = [Y; dubinspath.cs(2)+dubinspath.R*sin(th(i))];
Z = [Z; pd];
end
% points along straight line
sig = 0;
while sig<=1,
X = [X; (1-sig)*dubinspath.w1(1) + sig*dubinspath.w2(1)];
Y = [Y; (1-sig)*dubinspath.w1(2) + sig*dubinspath.w2(2)];
Z = [Z; pd];
sig = sig + Del;
end
% points along end circle
th2 = mod(atan2(dubinspath.pe(2)-dubinspath.ce(2),dubinspath.pe(1)-dubinspath.ce(1)),2*pi);
th1 = mod(atan2(dubinspath.w2(2)-dubinspath.ce(2),dubinspath.w2(1)-dubinspath.ce(1)),2*pi);
if dubinspath.lame>0,
if th1>=th2,
th = [th1:Del:2*pi,0:Del:th2];
else
th = [th1:Del:th2];
end
else
if th1<=th2,
th = [th1:-Del:0,2*pi:-Del:th2];
else
th = [th1:-Del:th2];
end
end
for i=1:length(th),
X = [X; dubinspath.ce(1)+dubinspath.R*cos(th(i))];
Y = [Y; dubinspath.ce(2)+dubinspath.R*sin(th(i))];
Z = [Z; pd];
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% downAtNE
%% find the world down coordinate at a specified (n,e) location
function down = downAtNE(map, n, e)
[d_n,idx_n] = min(abs(n - map.buildings_n));
[d_e,idx_e] = min(abs(e - map.buildings_e));
if (d_n<=map.BuildingWidth) && (d_e<=map.BuildingWidth),
down = -map.heights(idx_e,idx_n);
else
down = 0;
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% extendTree
%% extend tree by randomly selecting point and growing tree toward that
%% point
function [new_tree,flag] = extendTree(tree,end_node,segmentLength,map,pd,chi,R)
flag1 = 0;
loop_count = 0;
while flag1==0,
% select a random point
randomNode=generateRandomNode(map,pd,chi);
% find leaf on node that is closest to randomPoint
tmp = tree(:,1:3)-ones(size(tree,1),1)*randomNode(1:3);
[dist,idx] = min(diag(tmp*tmp'));
L = min(sqrt(dist), segmentLength);
if L < 2*R
L = 2*R+1;
end
cost = tree(idx,5) + L;
tmp = randomNode(1:3)-tree(idx,1:3);
new_point = tree(idx,1:3)+L*(tmp/norm(tmp));
connecting_line = new_point-tree(idx,1:3);
new_chi = atan2(connecting_line(1), connecting_line(2));
new_node = [new_point, new_chi, cost, idx, 0];
dubinspath = dubinsParameters(tree(idx,:),new_node,R);
new_node(4) = dubinspath.L; % new cost from dubins path
loop_count = loop_count + 1
if collision(tree(idx,:), new_node, map, R, pd)==0,
new_tree = [tree; new_node];
flag1=1;
end
end
% check to see if new node connects directly to end_node
if ( (norm(new_node(1:3)-end_node(1:3))<segmentLength )...
&&(norm(new_node(1:3)-end_node(1:3))>2*R)...
&&(collision(new_node,end_node,map, R, pd)==0) )
flag = 1;
new_tree(end,7)=1; % mark node as connecting to end.
else
flag = 0;
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% findMinimumPath
%% find the lowest cost path to the end node
function path = findMinimumPath(tree,end_node)
% find nodes that connect to end_node
connectingNodes = [];
for i=1:size(tree,1),
if tree(i,7)==1,
connectingNodes = [connectingNodes; tree(i,:)];
end
end
% find minimum cost last node
[tmp,idx] = min(connectingNodes(:,5));
% construct lowest cost path
path = [connectingNodes(idx,:); end_node];
parent_node = connectingNodes(idx,6);
while parent_node>1,
parent_node = tree(parent_node,6);
path = [tree(parent_node,:); path];
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% smoothPath
%% smooth the waypoint path
function newPath = smoothPath(path,map, R, pd)
newPath = path(1,:); % add the start node
ptr =2; % pointer into the path
while ptr <= size(path,1)-1,
if collision(newPath(end,:), path(ptr+1,:), map, R, pd)~=0, % if there is a collision
newPath = [newPath; path(ptr,:)]; % add previous node
end
ptr=ptr+1;
end
newPath = [newPath; path(end,:)];
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% plotmap
%% plot obstacles and path
function plotmap(map,path,smoothedPath,tree)
% setup plot
figure(3), clf
axis([0,map.width,0,map.width,0,2*map.MaxHeight]);
xlabel('E')
ylabel('N')
zlabel('h')
hold on
% plot buildings
V = [];
F = [];
patchcolors = [];
count = 0;
for i=1:map.NumBlocks,
for j=1:map.NumBlocks,
[Vtemp,Ftemp,patchcolorstemp] = buildingVertFace(map.buildings_n(i),...
map.buildings_e(j),map.BuildingWidth,map.heights(j,i));
V = [V; Vtemp];
Ftemp = Ftemp + count;
F = [F; Ftemp];
count = count + 8;
patchcolors = [patchcolors;patchcolorstemp];
end
end
patch('Vertices', V, 'Faces', F,...
'FaceVertexCData',patchcolors,...
'FaceColor','flat');
% draw tree
for i=2:size(tree,1),
X = [tree(i,1), tree(tree(i,6),1)];
Y = [tree(i,2), tree(tree(i,6),2)];
Z = [tree(i,3), tree(tree(i,6),3)];
plot3(Y,X,-Z,'g')
end
% draw path
X = path(:,1);
Y = path(:,2);
Z = path(:,3);
plot3(Y,X,-Z,'r','linewidth',2);
% draw smooth path
X = smoothedPath(:,1);
Y = smoothedPath(:,2);
Z = smoothedPath(:,3);
plot3(Y,X,-Z,'k','linewidth',2);
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% buildingVertFace(x,y,width,height)
%% define patches for a building located at (x,y)
function [V,F,patchcolors] = buildingVertFace(n,e,width,height)
% vertices of the building
V = [...
e+width/2, n+width/2, 0;...
e+width/2, n-width/2, 0;...
e-width/2, n-width/2, 0;...
e-width/2, n+width/2, 0;...
e+width/2, n+width/2, height;...
e+width/2, n-width/2, height;...
e-width/2, n-width/2, height;...
e-width/2, n+width/2, height;...
];
% define faces of fuselage
F = [...
1, 4, 8, 5;... % North Side
1, 2, 6, 5;... % East Side
2, 3, 7, 6;... % South Side
3, 4, 8, 7;... % West Side
5, 6, 7, 8;... % Top
];
myred = [1, 0, 0];
mygreen = [0, 1, 0];
myblue = [0, 0, 1];
myyellow = [1,1,0];
mymagenta = [0, 1, 1];
patchcolors = [...
mygreen;... % North
mygreen;... % East
mygreen;... % South
mygreen;... % West
myyellow;... % Top
];
end