generated from carpentries/workshop-template
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlesson3.Rmd
232 lines (193 loc) · 5.25 KB
/
lesson3.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
---
title: "R Notebook"
output:
pdf_document: default
html_notebook: default
---
This is an [R Markdown](http://rmarkdown.rstudio.com) Notebook. When you execute code within the notebook, the results appear beneath the code.
Try executing this chunk by clicking the *Run* button within the chunk or by placing your cursor inside it and pressing *Cmd+Shift+Enter*.
```{r}
plot(cars)
```
Add a new chunk by clicking the *Insert Chunk* button on the toolbar or by pressing *Cmd+Option+I*.
```{r}
library(tidyverse)
```
When you save the notebook, an HTML file containing the code and output will be saved alongside it (click the *Preview* button or press *Cmd+Shift+K* to preview the HTML file).
The preview shows you a rendered HTML copy of the contents of the editor. Consequently, unlike *Knit*, *Preview* does not run any R code chunks. Instead, the output of the chunk when it was last run in the editor is displayed.
```{r}
surveys <- read_csv('data_raw/portal_data_joined.csv')
```
```{r}
surveys_no_na <- surveys %>%
filter(!is.na(weight),
!is.na(hindfoot_length),
!is.na(sex))
head(surveys_no_na)
```
```{r}
species_counts <- surveys_no_na %>%
count(species_id) %>%
filter(n >= 50)
head(species_counts)
```
```{r}
surveys_complete <- surveys_no_na %>%
filter(species_id %in% species_counts$species_id)
```
Now, we're ready to make some graphs!
(Taken from https://datacarpentry.org/R-ecology-lesson/04-visualization-ggplot2.html)
GGPLOT uses the basic template:
`ggplot(data = <DATA>, mapping = aes(<MAPPINGS>)) + <GEOM_FUNCTION>()`
```{r}
ggplot(data = surveys_complete,
mapping = aes(x = weight,
y = hindfoot_length))
```
```{r}
ggplot(data = surveys_complete,
mapping = aes(x = weight,
y = hindfoot_length)) +
geom_point()
```
```{r}
ggplot(data = surveys_complete,
mapping = aes(x = weight,
y = hindfoot_length)) +
geom_point(alpha = 0.1)
```
```{r}
ggplot(data = surveys_complete,
mapping = aes(x = weight,
y = hindfoot_length)) +
geom_point(alpha = 0.1, colour = "blue")
```
```{r}
ggplot(data = surveys_complete,
mapping = aes(x = weight,
y = hindfoot_length,
color = species_id)) +
geom_point(alpha = 0.1)
```
Use what you just learned to create a scatter plot of weight over species_id with the plot types showing in different colors.
```{r}
ggplot(data = surveys_complete,
mapping = aes(x = species_id,
y = weight,
color = plot_type)) +
geom_point(alpha = 0.1)
```
```{r}
ggplot(data = surveys_complete,
mapping = aes(x = species_id,
y = weight)) +
geom_boxplot()
```
```{r}
ggplot(data = surveys_complete,
mapping = aes(x = species_id,
y = weight)) +
geom_boxplot() +
geom_jitter(alpha=0.3, color = "tomato")
```
```{r}
ggplot(data = surveys_complete,
mapping = aes(x = species_id,
y = weight,
color = sex)) +
geom_jitter(alpha=0.3) + geom_boxplot(alpha=0.1)
```
```{r}
yearly_counts <- surveys_complete %>%
count(year, genus)
head(yearly_counts)
```
```{r}
ggplot(data = yearly_counts,
mapping = aes(x = year,
y = n)) +
geom_line()
```
```{r}
ggplot(data = yearly_counts,
mapping = aes(x = year,
y = n,
group = genus)) +
geom_line()
```
```{r}
ggplot(data = yearly_counts,
mapping = aes(x = year,
y = n,
color = genus)) +
geom_line()
```
```{r}
ggplot(data = yearly_counts,
mapping = aes(x = year,
y = n)) +
geom_line() +
facet_wrap(facets = vars(genus))
```
```{r}
yearly_sex_counts <- surveys_complete %>%
count(year, genus, sex)
head(yearly_sex_counts)
```
```{r}
ggplot(data = yearly_sex_counts,
mapping = aes(x = year,
y = n,
color = sex)) +
geom_line() +
facet_wrap(facets = vars(genus))
```
```{r}
ggplot(data = yearly_sex_counts,
mapping = aes(x = year,
y = n,
color = sex)) +
geom_line() +
facet_grid(rows = vars(sex),
cols = vars(genus))
```
```{r}
ggplot(data = yearly_sex_counts,
mapping = aes(x = year,
y = n,
color = sex)) +
geom_line() +
facet_grid(rows = vars(genus))
```
```{r}
ggplot(data = yearly_sex_counts,
mapping = aes(x = year,
y = n,
color = sex)) +
geom_line() +
facet_wrap(facets = vars(genus)) +
theme_bw()
```
```{r}
yearly_weights <- surveys_complete %>%
group_by(year, species_id) %>%
summarize(mean_weight = mean(weight))
head(yearly_weights)
```
```{r}
ggplot(data = yearly_weights,
mapping = aes(x = year,
y = mean_weight)) +
geom_line() +
facet_wrap(facets = vars(species_id)) +
theme_minimal()
```
```{r}
weight_graph <- ggplot(data = yearly_weights,
mapping = aes(x = year,
y = mean_weight)) +
geom_line() +
facet_wrap(facets = vars(species_id)) +
theme_minimal()
ggsave('weight_graph.png', plot = weight_graph, width = 10, dpi=500)
```