-
Notifications
You must be signed in to change notification settings - Fork 79
/
Copy pathdemo_rag_langchain_onlinellm.py
261 lines (230 loc) · 7.91 KB
/
demo_rag_langchain_onlinellm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
import os
import gradio as gr
from dotenv import load_dotenv
from langchain_community.embeddings import HuggingFaceEmbeddings
from tianji.knowledges.langchain_onlinellm.models import ZhipuAIEmbeddings, ZhipuLLM
from langchain_chroma import Chroma
from langchain_community.document_loaders import (
TextLoader,
DirectoryLoader,
WebBaseLoader,
)
from langchain_text_splitters import RecursiveCharacterTextSplitter
from langchain_core.runnables import RunnablePassthrough
from langchain_core.output_parsers import StrOutputParser
from langchain import hub
from tianji import TIANJI_PATH
# 加载环境变量
load_dotenv()
def create_embeddings(embedding_choice: str, cache_folder: str):
"""
根据选择创建嵌入模型
:param embedding_choice: 嵌入模型选择 ('huggingface' 或 'zhipuai')
:param cache_folder: 缓存文件夹路径
:return: 嵌入模型实例
"""
if embedding_choice == "huggingface":
return HuggingFaceEmbeddings(
model_name="BAAI/bge-base-zh-v1.5",
model_kwargs={"device": "cpu"},
encode_kwargs={"normalize_embeddings": True},
cache_folder=cache_folder,
)
return ZhipuAIEmbeddings()
def create_vectordb(
data_type: str,
data_path: str,
persist_directory: str,
embedding_func,
chunk_size: int,
force: bool = True,
):
"""
创建或加载向量数据库
:param data_type: 数据类型 ('folder' 或 'web')
:param data_path: 数据路径
:param persist_directory: 持久化目录
:param embedding_func: 嵌入函数
:param chunk_size: 文本块大小
:param force: 是否强制重建数据库
:return: Chroma 向量数据库实例
"""
if os.path.exists(persist_directory) and not force:
print(f"使用现有的向量数据库: {persist_directory}")
return Chroma(
persist_directory=persist_directory, embedding_function=embedding_func
)
if force and os.path.exists(persist_directory):
print(f"强制重建向量数据库: {persist_directory}")
if os.path.isdir(persist_directory):
import shutil
shutil.rmtree(persist_directory)
else:
os.remove(persist_directory)
if data_type == "folder":
loader = DirectoryLoader(data_path, glob="*.txt", loader_cls=TextLoader)
elif data_type == "web":
loader = WebBaseLoader(
web_paths=(data_path,),
)
else:
raise gr.Error("不支持的数据类型。请选择 'folder' 或 'web'。")
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=chunk_size, chunk_overlap=200
)
split_docs = text_splitter.split_documents(loader.load())
if len(split_docs) == 0:
raise gr.Error("当前知识数据无效,处理数据后为空")
vector_db = Chroma.from_documents(
documents=split_docs,
embedding=embedding_func,
persist_directory=persist_directory,
)
return vector_db
def initialize_chain(
embedding_choice: str,
chunk_size: int,
cache_folder: str,
persist_directory: str,
data_type: str,
data_path: str,
):
"""
初始化检索增强生成(RAG)链
:param embedding_choice: 嵌入模型选择
:param chunk_size: 文本块大小
:param cache_folder: 缓存文件夹路径
:param persist_directory: 持久化目录
:param data_type: 数据类型
:param data_path: 数据路径
:return: RAG 链
"""
embeddings = create_embeddings(embedding_choice, cache_folder)
vectordb = create_vectordb(
data_type, data_path, persist_directory, embeddings, chunk_size
)
retriever = vectordb.as_retriever()
prompt = hub.pull("rlm/rag-prompt")
prompt.messages[
0
].prompt.template = """
您是一名用于问答任务的助手。使用检索到的上下文来回答问题。如果您不知道答案,就直接说不知道。\
1.根据我的提问,总结检索到的上下文中与提问最接近的部分,将相关部分浓缩为一段话返回;
2.根据语料结合我的问题,给出建议和解释。\
\n问题:{question} \n上下文:{context} \n答案:
"""
llm = ZhipuLLM() # 使用ZhipuLLM作为默认LLM
return (
{"context": retriever | format_docs, "question": RunnablePassthrough()}
| prompt
| llm
| StrOutputParser()
)
def format_docs(docs):
"""格式化文档"""
return "\n\n".join(doc.page_content for doc in docs)
def handle_question(chain, question: str, chat_history):
"""
处理用户问题
:param chain: RAG 链
:param question: 用户问题
:param chat_history: 聊天历史
:return: 更新后的问题和聊天历史
"""
if not question:
return "", chat_history
try:
result = chain.invoke(question)
chat_history.append((question, result))
return "", chat_history
except Exception as e:
return str(e), chat_history
def update_settings(
embedding_choice: str,
chunk_size: int,
cache_folder: str,
persist_directory: str,
data_type: str,
data_path: str,
):
"""
更新设置并初始化模型
:return: 初始化的链和状态消息
"""
chain = initialize_chain(
embedding_choice,
chunk_size,
cache_folder,
persist_directory,
data_type,
data_path,
)
return chain, "什么是春节?"
def update_data_path(data_type: str):
"""
根据数据类型更新数据路径
:param data_type: 数据类型
:return: 更新后的数据路径
"""
if data_type == "web":
return (
"https://r.jina.ai/https://baike.baidu.com/item/%E6%98%A5%E8%8A%82/136876"
)
return os.path.join(TIANJI_PATH, "test", "knowledges", "langchain", "db_files")
def update_chat_history(msg: str, chat_history):
"""更新聊天历史"""
return str(msg), chat_history
# 创建Gradio界面
with gr.Blocks() as demo:
gr.Markdown(
"""提醒:<br>
1. 初始化数据库可能需要一些时间,请耐心等待。<br>
2. 如果使用过程中出现异常,将在文本输入框中显示,请不要惊慌。<br>
"""
)
with gr.Row():
embedding_choice = gr.Radio(
["huggingface", "zhipuai"], label="选择嵌入模型", value="zhipuai"
)
chunk_size = gr.Slider(256, 2048, step=256, label="选择文本块大小", value=512)
cache_folder = gr.Textbox(
label="缓存文件夹路径", value=os.path.join(TIANJI_PATH, "temp")
)
persist_directory = gr.Textbox(
label="持久化数据库路径", value=os.path.join(TIANJI_PATH, "temp", "chromadb_spring")
)
data_type = gr.Radio(["folder", "web"], label="数据类型", value="folder")
data_path = gr.Textbox(
label="数据路径",
value=os.path.join(
TIANJI_PATH, "test", "knowledges", "langchain", "db_files"
),
)
update_button = gr.Button("初始化数据库")
chatbot = gr.Chatbot(height=450, show_copy_button=True)
msg = gr.Textbox(label="问题/提示")
with gr.Row():
chat_button = gr.Button("聊天")
clear_button = gr.ClearButton(components=[chatbot], value="清除聊天记录")
data_type.change(update_data_path, inputs=[data_type], outputs=[data_path])
model_chain = gr.State()
update_button.click(
update_settings,
inputs=[
embedding_choice,
chunk_size,
cache_folder,
persist_directory,
data_type,
data_path,
],
outputs=[model_chain, msg],
)
chat_button.click(
handle_question,
inputs=[model_chain, msg, chatbot],
outputs=[msg, chatbot],
).then(update_chat_history, inputs=[msg, chatbot], outputs=[msg, chatbot])
# 启动Gradio应用
if __name__ == "__main__":
demo.launch()