forked from soraminnnn/TsGAN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgan.py
217 lines (188 loc) · 9.24 KB
/
gan.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
import argparse
import torch
import torch.nn as nn
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
import os
import time
import numpy as np
from model.generator.netG import Generator
from model.discriminator.netD import Discriminator
parser = argparse.ArgumentParser()
parser.add_argument("--data", type=str, default="data/planetLab/train.npy",help="path to load the training data")
parser.add_argument("--use_GPU", type=bool, default=True, help="whether use GPU")
parser.add_argument("--latent_dim", type=int, default=100, help="dimensionality of the latent space")
parser.add_argument("--models_dir", type=str, default="model_saved",help='path to save the trained models.')
parser.add_argument("--models_iter",type=int, default=50, help="number of epochs of saving model")
parser.add_argument("--samples_dir", type=str, default="samples",help='path to save the output samples.')
parser.add_argument("--samples_iter",type=int, default=50, help="number of epochs of generating validate samples")
###training parameters###
parser.add_argument("--n_epochs", type=int, default=1000, help="number of epochs of training")
parser.add_argument("--batch_size", type=int, default=128, help="batch size of training")
parser.add_argument("--lr", type=float, default=0.0002, help="adam: learning rate")
parser.add_argument("--b1", type=float, default=0.5, help="adam: decay of first order momentum of gradient")
parser.add_argument("--b2", type=float, default=0.999, help="adam: decay of first order momentum of gradient")
parser.add_argument("--lr_decay", type=bool, default=False, help="whether use learning rate decay(linear decay)")
parser.add_argument("--start_decay", type=int, default=100, help="epochs of starting learning rate decay")
parser.add_argument("--n_generator", type=int, default=5, help="iterations for generator of training")
###generator parameters###
parser.add_argument("--g_num_layers", type=int, default=6, help="number of layers of the generator")
parser.add_argument("--g_num_filters", type=int, default=32, help="number of filters of the generator")
parser.add_argument("--g_kernel_size", type=int, default=7, help="kernel size of convolution for the generator")
###discriminator parameters###
parser.add_argument("--d_num_layers", type=int, default=3, help="number of layers of the discriminator")
parser.add_argument("--d_downsample", type=bool, nargs='+', default=[True]*3, help="whether use average pool in each layer of the discriminator")
args = parser.parse_args()
if args.use_GPU:
device = 'cuda:0'
else:
device = 'cpu'
fix_z = torch.randn(5,args.latent_dim).to(device)
def decay_lr(opt, max_iter, start_iter, initial_lr):
'''Decay learning rate linearly till 0.'''
coeff = -initial_lr / (max_iter - start_iter)
for pg in opt.param_groups:
pg['lr'] += coeff
def train():
data = np.load(args.data)
print('dataset shape: {}'.format(data.shape))
#data preprocess
max=[]
min=[]
for i in range(data.shape[1]):
max.append(np.max(data[:, i, :]))
min.append(np.min(data[:, i, :]))
data[:, i, :] = (data[:, i, :] - min[i]) / (max[i] - min[i])
data = (data-0.5)/0.5
#dataset info
samples_size = data.shape[0]
series_len = data.shape[2]*data.shape[3]
series_dim = data.shape[1]
net_g = Generator(latent_dim=args.latent_dim, seq_len=series_len, input_dim=1, output_dim=series_dim, num_channels=[args.g_num_filters]*args.g_num_layers,kernel_size=args.g_kernel_size).to(device)
net_d = Discriminator(in_channels=series_dim,num_layers=args.d_num_layers,downsample=args.d_downsample).to(device)
latent_shape = [1, args.latent_dim]
output_shape = [series_dim,data.shape[2],data.shape[3]]
optimizer_d = torch.optim.Adam(net_d.parameters(), lr=args.lr, betas=(args.b1, args.b2))
optimizer_g = torch.optim.Adam(net_g.parameters(), lr=args.lr, betas=(args.b1, args.b2))
data = torch.Tensor(data)
dataset = torch.utils.data.TensorDataset(data,torch.ones(samples_size))
data_loader = torch.utils.data.DataLoader(dataset=dataset, batch_size=args.batch_size, shuffle=True)
print('##network structure discription##')
print(net_g)
print(net_d)
d_losses = []
g_losses = []
D_x = []
D_gz = []
iters = 0
# loss function
criterion = nn.BCELoss().to(device)
# training iterations
total_step = len(data_loader)
start_epoch = 0
checkpoint_path = '%s/check.pth'%args.models_dir
'''
reload training from checkpoint
'''
if os.path.exists(checkpoint_path):
checkpoint = torch.load(checkpoint_path)
net_g.load_state_dict(checkpoint['net_g'])
net_g.train()
optimizer_g.load_state_dict(checkpoint['optimizer_g'])
net_d.load_state_dict(checkpoint['net_d'])
net_d.train()
optimizer_d.load_state_dict(checkpoint['optimizer_d'])
start_epoch = checkpoint['epoch'] + 1
print('####restart from epoch %s####' % start_epoch)
start = time.perf_counter() # time.clock()
for epoch in range(start_epoch, args.n_epochs):
net_g.train()
if(args.lr_decay and epoch+1 >= args.start_decay):
decay_lr(optimizer_g,args.n_epochs,args.start_decay,args.lr)
decay_lr(optimizer_d,args.n_epochs,args.start_decay,args.lr)
for i, (real_data, _) in enumerate(data_loader):
true_batch_size = real_data.shape[0]
latent_shape[0] = true_batch_size
true_lable = torch.ones(true_batch_size, 1).to(device)
fake_lable = torch.zeros(true_batch_size, 1).to(device)
# ================================================================== #
# Train the discriminator #
# ================================================================== #
optimizer_d.zero_grad()
# real_loss for the discriminator
real_data = real_data.to(device)
outputs = net_d(real_data)
d_x = outputs
d_loss_real = criterion(outputs, true_lable)
# fake_loss for the discriminator
z = torch.randn(latent_shape).to(device)
fake_data = net_g(z).view(true_batch_size,*output_shape)
outputs = net_d(fake_data)
d_loss_fake = criterion(outputs, fake_lable)
# total_loss
d_loss = d_loss_fake + d_loss_real
d_loss.backward()
optimizer_d.step()
# ================================================================== #
# Train the generator #
# ================================================================== #
if (i+1) % args.n_generator == 0:
z = torch.randn(latent_shape).to(device)
optimizer_g.zero_grad()
fake_data = net_g(z).view(true_batch_size,*output_shape)
outputs = net_d(fake_data)
d_gz = outputs
# loss
g_loss = criterion(outputs, true_lable)
g_loss.backward()
optimizer_g.step()
print('Epoch [{}/{}], Step [{}/{}], d_loss: {:.4f}, g_loss: {:.4f}, D(x): {:.2f}, D(G(z)): {:.2f}'
.format(epoch, args.n_epochs, i + 1, total_step, d_loss.item(), g_loss.item(),
d_x.mean().item(), d_gz.mean().item()))
D_x.append(d_x.mean().item())
D_gz.append(d_gz.mean().item())
d_losses.append(d_loss.item())
g_losses.append(g_loss.item())
iters += 1
if (epoch+1) % args.models_iter == 0:
torch.save(net_g.state_dict(), '%s/%sepochs.pkl' % (args.models_dir,epoch+1))
#save checkpoint
checkpoint = {
'net_g': net_g.state_dict(),
'optimizer_g': optimizer_g.state_dict(),
'net_d': net_d.state_dict(),
'optimizer_d': optimizer_d.state_dict(),
'epoch': epoch
}
torch.save(checkpoint,checkpoint_path)
print('####Check point saved####')
if (epoch+1) % args.samples_iter == 0:
net_g.eval()
samples = net_g(fix_z).cpu().detach().numpy()
samples = (samples * 0.5) + 0.5
for n in range(samples.shape[1]):
samples[:,n,:] = samples[:,n,:] * (max[n]-min[n]) + min[n]
for n in range(samples.shape[0]):
plt.clf()
for N in range(samples.shape[1]):
plt.plot(samples[n,N,:])
plt.savefig('%s/%s_%s.png'%(args.samples_dir,epoch+1,n))
print("####training finished####")
torch.save(net_g.state_dict(), '%s/%sepochs.pkl' %(args.models_dir,args.n_epochs))
print('model saved successfully')
end = time.clock()
print('Running time: %s Seconds' % (end - start))
#plt loss history
plt.figure(figsize=(10, 5))
plt.title("Training Loss")
plt.plot(d_losses, label="G_loss" , color='black')
plt.plot(g_losses, label="D_loss", color='red')
plt.plot(D_x, label="D(x)", color='green')
plt.plot(D_gz, label="D(g(z))", color='yellow')
plt.xlabel("iterations")
plt.ylabel("Loss")
plt.legend()
plt.savefig('loss.png')
if __name__ == '__main__':
train()