-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathactivation.cpp
211 lines (194 loc) · 6.25 KB
/
activation.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
#include <cmath>
#include <vector>
double sigmoid(double x)
{
/**
* The sigmoid function maps any real-valued number to a value between 0 and 1.
* It is often used in the output layer of a neural network when the task is a
* binary classification problem.
* @param x the input value
* @return the output value of the sigmoid function
*/
return 1 / (1 + exp(-x));
}
double sigmoidDerivative(double x)
{ /**
* The derivative of the sigmoid function.
* @param x the input value
* @return the output value of the derivative of the sigmoid function
*/
return exp(x) / pow((exp(x) + 1), 2);
}
std::vector<double> vectSigmoid(const std::vector<double> x)
{
/**
* A vectorized version of the sigmoid function.
* @param x the input vector
* @return a vector where each element is the sigmoid of the corresponding element in x
*/
std::vector<double> result;
result.reserve(x.size());
for (double i : x)
result.push_back(sigmoid(i));
return result;
}
std::vector<double> vectSigmoidDerivative(const std::vector<double> x)
{
/**
* A vectorized version of the derivative of the sigmoid function.
* @param x the input vector
* @return a vector where each element is the derivative of the sigmoid of the corresponding element in x
*/
std::vector<double> result;
result.reserve(x.size());
for (double i : x)
result.push_back(sigmoidDerivative(i));
return result;
}
double relu(double x)
{ /**
* The Rectified Linear Unit (ReLU) activation function.
* @param x the input value
* @return the output value of the ReLU function
*/
if (x > 0)
return x;
else
return 0;
}
double reluDerivative(double x)
{ /**
* The derivative of the Rectified Linear Unit (ReLU) activation function.
* @param x the input value
* @return the output value of the derivative of the ReLU function
*/
if (x >= 0)
return 1;
else
return 0;
}
std::vector<double> vectRelu(const std::vector<double> x)
{ /**
* A vectorized version of the Rectified Linear Unit (ReLU) activation function.
* @param x the input vector
* @return a vector where each element is the ReLU of the corresponding element in x
*/
std::vector<double> result;
result.reserve(x.size());
for (double i : x)
result.push_back(relu(i));
return result;
}
std::vector<double> vectReluDerivative(const std::vector<double> x)
{ /**
* A vectorized version of the derivative of the Rectified Linear Unit (ReLU) activation function.
* @param x the input vector
* @return a vector where each element is the derivative of the ReLU function of the corresponding element in x
*/
std::vector<double> result;
result.reserve(x.size());
for (double i : x)
result.push_back(reluDerivative(i));
return result;
}
double leakyRelu(double x, double alpha = 0.01)
{
/**
* The Leaky Rectified Linear Unit (Leaky ReLU) activation function.
* @param x the input value
* @param alpha the leak rate, defaults to 0.01
* @return the output value of the Leaky ReLU function
*/
if (x > 0)
return x;
else
return alpha * x;
}
double leakyReluDerivative(double x, double alpha = 0.01)
{ /**
* The derivative of the Leaky Rectified Linear Unit (Leaky ReLU) activation function.
* @param x the input value
* @param alpha the leak rate, defaults to 0.01
* @return the output value of the derivative of the Leaky ReLU function
*/
if (x >= 0)
return 1;
else
return alpha;
}
std::vector<double> vectLeakyRelu(const std::vector<double> x, double alpha = 0.01)
{ /**
* A vectorized version of the Leaky Rectified Linear Unit (Leaky ReLU) activation function.
* @param x the input vector
* @param alpha the leak rate, defaults to 0.01
* @return a vector where each element is the Leaky ReLU of the corresponding element in x
*/
std::vector<double> result;
result.reserve(x.size());
for (double i : x)
result.push_back(leakyRelu(i, alpha));
return result;
}
std::vector<double> vectLeakyReluDerivative(const std::vector<double> x, double alpha = 0.01)
{ /**
* A vectorized version of the derivative of the Leaky Rectified Linear Unit (Leaky ReLU) activation function.
* @param x the input vector
* @param alpha the leak rate, defaults to 0.01
* @return a vector where each element is the derivative of the Leaky ReLU function of the corresponding element in x
*/
std::vector<double> result;
result.reserve(x.size());
for (double i : x)
result.push_back(leakyReluDerivative(i, alpha));
return result;
}
double tanh(double x)
{ /**
* The Hyperbolic Tangent (tanh) activation function.
* @param x the input value
* @return the output value of the tanh function
*/
return (exp(x) - exp(-x)) / (exp(x) + exp(-x));
}
double tanhDerivative(double x)
{ /**
* The derivative of the Hyperbolic Tangent (tanh) activation function.
* @param x the input value
* @return the output value of the derivative of the tanh function
*/
return 1 - pow(tanh(x), 2);
}
std::vector<double> vectTanh(const std::vector<double> x)
{ /**
* A vectorized version of the Hyperbolic Tangent (tanh) activation function.
* @param x the input vector
* @return a vector where each element is the tanh of the corresponding element in x
*/
std::vector<double> result;
result.reserve(x.size());
for (double i : x)
result.push_back(tanh(i));
return result;
}
std::vector<double> vectTanhDerivative(const std::vector<double> x)
{ /**
* A vectorized version of the derivative of the Hyperbolic Tangent (tanh) activation function.
* @param x the input vector
* @return a vector where each element is the derivative of the tanh function of the corresponding element in x
*/
std::vector<double> result;
result.reserve(x.size());
for (double i : x)
result.push_back(tanhDerivative(i));
return result;
}
// std::vector<double> softmax(std::vector<double> z)
// {
// std::vector<double> result;
// double sum = 0.0;
// for (double i : z)
// sum += exp(i);
// for (int j = 0; j < z.size(); j++)
// result.push_back(exp(z[j]) / sum);
// return result;
// }