-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathrun_hanabi.py
131 lines (106 loc) · 5.81 KB
/
run_hanabi.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
import warnings
import argparse
import os, time
import sys
import gym
import my_gym
from hanabi_learning_environment import pyhanabi
from stable_baselines3 import PPO
from stable_baselines3.common.env_checker import check_env
from stable_baselines3.common import make_vec_env
from stable_baselines3.common.vec_env import DummyVecEnv
from stable_baselines3.common.evaluation import evaluate_policy
import torch as th
import torch.nn as nn
from interactive_policy import HanabiPolicy
from partner_config import get_hanabi_partners
from util import check_optimal, learn, load_model
from util import adapt_task, adapt_partner_baseline, adapt_partner_modular, adapt_partner_scratch
warnings.simplefilter(action='ignore', category=FutureWarning)
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('--n', type=int, default=4, help="n arms")
parser.add_argument('--run', type=int, default=0, help="Run ID. In case you want to run replicates")
parser.add_argument('--netsz', type=int, default=500, help="Size of policy network")
parser.add_argument('--latentz', type=int, default=500, help="Size of latent z dimension")
parser.add_argument('--mreg', type=float, default=0.0, help="Marginal regularization.")
parser.add_argument('--baseline', action='store_true', default=False, help="Baseline: no modular separation.")
parser.add_argument('--nomain', action='store_true', default=False, help="Baseline: don't use main logits.")
parser.add_argument('--timesteps', type=int, default=500000, help="Number of timesteps to train for")
parser.add_argument('--selfplay', action='store_true', default=False, help="converge using selfplay")
parser.add_argument('--testing', action='store_true', default=False, help="Testing.")
parser.add_argument('--zeroshot', action='store_true', default=False, help="Try zeroshot combination of task + partner.")
parser.add_argument('--k', type=int, default=0, help="When fixedpartner=True, k is the index of the test partner")
parser.add_argument('--colors', type=int, default=1, help="number of card colors in the game")
parser.add_argument('--ranks', type=int, default=5, help="number of card ranks in the game")
parser.add_argument('--hand_sz', type=int, default=2, help="hand size of each player")
parser.add_argument('--info', type=int, default=3, help="number of information tokens")
parser.add_argument('--life', type=int, default=3, help="number of life tokens")
args = parser.parse_args()
print(args)
def get_model_name_and_path(run, mreg=0.00):
layout = [
('n={:01d}', args.n),
('run={:04d}', run),
('netsz={:03d}', args.netsz),
('mreg={:.2f}', mreg),
]
m_name = '_'.join([t.format(v) for (t, v) in layout])
m_path = 'output/hanabi_' + m_name
return m_name, m_path
model_name, model_path = get_model_name_and_path(args.run, mreg=args.mreg)
HP = {
'n_steps': 640,
'n_steps_testing': 640,
'batch_size': 160,
'n_epochs': 5,
'n_epochs_testing': 5,
'mreg': args.mreg,
}
config = {
"colors": args.colors,
"ranks": args.ranks,
"players": 2,
"hand_size": args.hand_sz,
"max_information_tokens": args.info,
"max_life_tokens": args.life,
"observation_type": pyhanabi.AgentObservationType.CARD_KNOWLEDGE.value
}
env = gym.make('hanabi-v0', config=config)
if args.selfplay:
PARTNERS = None # this must be None to trigger selfplay
else:
setting, partner_type = "", "ppo"
TRAIN_PARTNERS, TEST_PARTNERS = get_hanabi_partners(setting, partner_type)
PARTNERS = [ TEST_PARTNERS[args.k % len(TEST_PARTNERS)] ] if args.testing else TRAIN_PARTNERS
def main():
global PARTNERS
num_partners = len(PARTNERS) if PARTNERS is not None else 1
print("model path: ", model_path)
net_arch = [args.netsz,args.latentz]
partner_net_arch = [args.netsz,args.netsz]
policy_kwargs = dict(activation_fn=nn.ReLU,
net_arch=[dict(vf=net_arch, pi=net_arch)],
partner_net_arch=[dict(vf=partner_net_arch, pi=partner_net_arch)],
num_partners=num_partners,
baseline=args.baseline,
nomain=args.nomain,
)
def load_model_fn(partners, testing, try_load=True):
return load_model(model_path=model_path, policy_class=HanabiPolicy, policy_kwargs=policy_kwargs, env=env, hp=HP, partners=partners, testing=testing, try_load=try_load)
def learn_model_fn(model, timesteps, save, period):
return learn(model, model_name=model_name, model_path=model_path, timesteps=timesteps, save=save, period=period)
# TRAINING
if not args.testing:
print("#section Training")
model = load_model_fn(partners=PARTNERS, testing=False)
learn_model_fn(model, timesteps=args.timesteps, save=True, period=2000)
ts, period = 25600, HP['n_steps_testing']
# TESTING
if args.testing and not args.zeroshot:
if args.baseline: adapt_partner_baseline(load_model_fn, learn_model_fn, partners=PARTNERS, timesteps=ts, period=period, do_optimal=False)
else: adapt_partner_modular(load_model_fn, learn_model_fn, partners=PARTNERS, timesteps=ts, period=period, do_optimal=False)
adapt_partner_scratch(load_model_fn, learn_model_fn, partners=PARTNERS, timesteps=ts, period=period, do_optimal=False)
if args.testing and args.zeroshot:
adapt_task(load_model_fn, learn_model_fn, train_partners=TRAIN_PARTNERS, test_partners=TEST_PARTNERS, timesteps=args.timesteps, period=200)
if __name__ == "__main__":
main()