-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtorch_R_PLN.qmd
187 lines (156 loc) · 5.12 KB
/
torch_R_PLN.qmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
---
title: "PLN version R"
lang: fr
execute:
freeze: auto
output:
html_document:
toc: true
toc_float: true
---
## PLN with R-torch
### Préliminaires
On charge le jeu de données `oaks` contenu dans `PLNmodels`
```{r load-plnmodels, messages=FALSE}
library(PLNmodels)
data(oaks)
```
Pour référence, on optimise avec le package dédié (qui utilise le backend `NLOpt`, une bilbiothèque `C++` d'optimisation non linéaire. La variance `CCSQA`, utilisant les gradients explicites, est utilisée).
```{r oaks-(plnmodels)}
system.time(myPLN_nlopt <- PLN(Abundance ~ 1 + offset(log(Offset)), data = oaks))
```
### Implémentation en R-torch
On définit une simple classe avec une routine d'optimisation utilisant `Rprop` et l'auto-differentiation sur le critère à optimiser (l'ELBO = Expected Lower BOund).
```{r pln-torch-class}
library(torch)
library(R6)
log_stirling <- function(n_){
n_ <- n_+ (n_==0)
torch_log(torch_sqrt(2*pi*n_)) + n_*log(n_/exp(1))
}
PLN <-
R6Class("PLN",
public = list(
Y = NULL,
O = NULL,
X = NULL,
n = NULL,
p = NULL,
d = NULL,
M = NULL,
S = NULL,
A = NULL,
B = NULL,
Sigma = NULL,
Omega = NULL,
loglik = NULL,
ELBO_list = NULL,
## Constructor
initialize = function(Y, O, X){
self$Y <- torch_tensor(Y)
self$O <- torch_tensor(O)
self$X <- torch_tensor(X)
self$n <- nrow(Y)
self$p <- ncol(Y)
self$d <- ncol(X)
## Variational parameters
self$M <- torch_zeros(self$n, self$p, requires_grad = TRUE)
self$S <- torch_ones(self$n , self$p, requires_grad = TRUE)
## Model parameters
self$B <- torch_full(c(self$d, self$p), -8.0, requires_grad = TRUE)
self$Sigma <- torch_eye(self$p)
self$Omega <- torch_eye(self$p)
## Monitoring
self$ELBO_list <- c()
},
get_Sigma = function(M, S){
1/self$n * (torch_mm(torch_t(M),M) + torch_diag(torch_sum(S**2, dim = 1)))
},
get_ELBO = function(B, M, S, Omega){
S2 <- torch_square(S)
XB <- torch_mm(self$X, B)
A <- torch_exp(self$O + M + XB + S2/2)
self$n/2 * torch_logdet(Omega) -
torch_sum(A - self$Y * (self$O + M + XB) - .5 * torch_log(S2))
},
get_loglik = function(B, M, S, Omega) {
S2 <- S**2
XB <- torch_mm(self$X, B)
A <- torch_exp(self$O + M + XB + S2/2)
J <- self$n/2 * torch_logdet(Omega) +
.5 * self$n * self$p - torch_sum(log_stirling(self$Y)) -
torch_sum(A - self$Y * (self$O + M + XB) - .5 * torch_log(S2)) -
.5 * torch_sum(torch_mm(M, Omega) * M + S2 * torch_diag(Omega))
J
},
fit = function(N_iter, lr, tol = 1e-8, verbose = FALSE){
self$ELBO_list <- double(length = N_iter)
optimizer <- optim_rprop(c(self$B, self$M, self$S), lr = lr)
objective0 <- Inf
for (i in 1:N_iter){
## reinitialize gradients
optimizer$zero_grad()
## compute current ELBO
loss <- - self$get_ELBO(self$B, self$M, self$S, self$Omega)
## backward propagation and optimization
loss$backward()
optimizer$step()
## update parameters with close form
self$Sigma <- self$get_Sigma(self$M, self$S)
self$Omega <- torch_inverse(self$Sigma)
objective <- -loss$item()
if(verbose && (i %% 50 == 0)){
pr('i : ', i )
pr('ELBO', objective)
}
self$ELBO_list[i] <- objective
if (abs(objective0 - objective)/abs(objective) < tol) {
self$ELBO_list <- self$ELBO_list[1:i]
break
} else {
objective0 <- objective
}
}
self$loglik <- self$get_loglik(self$B, self$M, self$S, self$Omega)
},
plotLogNegElbo = function(from = 10){
plot(log(-self$ELBO_list[from:length(self$ELBO_list) ]), type = "l")
}
)
)
```
### Évaluation du temps de calcul
On crée une instance avec les données appropriées
```{r torch-pln-instantiate}
Y <- oaks$Abundance
X <- cbind(rep(1, nrow(Y)))
O <- log(oaks$Offset)
myPLN <- PLN$new(Y = Y, O = O, X = X)
```
Testons notre implémentation simple de PLN utilisant R-torch:
```{r torch-pln-fit}
system.time(myPLN$fit(1000, lr = 0.05, tol = 1e-9))
plot(-myPLN$ELBO_list, type="l")
```
En fait, un backend torch est déjà disponible dans le package `PLNmodels`
```{r torch-plnmodels-fit}
system.time(myPLN_torch <- PLN(Abundance ~ 1 + offset(log(Offset)), data = oaks, control = PLN_param(backend = 'torch', config_optim = list(lr = 0.01))))
```
Les vraisemblances finales sont comparables
```{r elbo-comparison}
myPLN_nlopt$loglik
myPLN_torch$loglik
myPLN$loglik
```
Ainsi que les paramètres
```{r}
#| layout-ncol: 2
plot(myPLN$B,
myPLN_nlopt$model_par$B,
xlab = "Naive torch", ylab = "PLN torch",
main = "Regression coefficients"); abline(0, 1, col = "red")
plot(myPLN_torch$model_par$Sigma,
myPLN$Sigma,
xlab = "Naive torch", ylab = "PLN torch",
main = "Covariance matrix"); abline(0, 1, col = "red")
```