-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathgeneral_chatbot.py
48 lines (42 loc) · 1.35 KB
/
general_chatbot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
from flask import Flask, request, jsonify
from transformers import pipeline
from transformers import AutoModelForCausalLM, AutoTokenizer
import re
import os
app = Flask(__name__)
api_token = os.getenv("HUGGINGFACE_API_KEY")
# Load the model and tokenizer
model_name = "google/gemma-2-2b"
#tokenizer = AutoTokenizer.from_pretrained(model_name,use_auth_token=True)
tokenizer = AutoTokenizer.from_pretrained("t5-large",use_auth_token=True)
model = AutoModelForCausalLM.from_pretrained(model_name,use_auth_token=True)
pipe = pipeline(
"text-generation",
model=model,
tokenizer=tokenizer,
device="cuda",
max_new_tokens=256,
no_repeat_ngram_size=3,
top_k=50,
top_p=0.9,
temperature=0.7,
early_stopping=True,
return_full_text=False,
num_return_sequences=1
)
def extract_answer(text):
match = re.search(r'\[Answer 1\](.*?)(\[User|\Z)', text, re.DOTALL)
if match:
return match.group(1).strip() # Extract and clean up the text
return text
@app.route('/chat', methods=['POST'])
def chat():
data = request.get_json()
user_message = data['message']
# Generate response from the model
outputs = pipe(user_message)
response = outputs[0]['generated_text']
cleaned_text = extract_answer(response)
return jsonify({'reply': cleaned_text})
if __name__ == '__main__':
app.run(debug=True)