-
Notifications
You must be signed in to change notification settings - Fork 19
/
Copy pathtraining.py
184 lines (156 loc) · 7.84 KB
/
training.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
import logging
import sys
from collections import Counter
from theano import tensor
from toolz import merge
from blocks.algorithms import (GradientDescent, StepClipping, AdaDelta, CompositeRule)
from blocks.extensions import FinishAfter, Printing, Timing
from blocks.filter import VariableFilter
from blocks.graph import ComputationGraph, apply_noise
from blocks.initialization import IsotropicGaussian, Orthogonal, Constant
from blocks.main_loop import MainLoop
from blocks.model import Model
from blocks.select import Selector
from blocks.monitoring import aggregation
from checkpoint import CheckpointNMT, LoadNMT
from model import BidirectionalEncoder, Decoder
from sampling import BleuValidator, Sampler, CostCurve
import pprint
import configurations
from stream import get_tr_stream, get_dev_stream
logger = logging.getLogger(__name__)
logging.basicConfig(level=logging.INFO)
def main(config, tr_stream, dev_stream):
# Create Theano variables
logger.info('Creating theano variables')
source_char_seq = tensor.lmatrix('source_char_seq')
source_sample_matrix = tensor.btensor3('source_sample_matrix')
source_char_aux = tensor.bmatrix('source_char_aux')
source_word_mask = tensor.bmatrix('source_word_mask')
target_char_seq = tensor.lmatrix('target_char_seq')
target_char_aux = tensor.bmatrix('target_char_aux')
target_char_mask = tensor.bmatrix('target_char_mask')
target_sample_matrix = tensor.btensor3('target_sample_matrix')
target_word_mask = tensor.bmatrix('target_word_mask')
target_resample_matrix = tensor.btensor3('target_resample_matrix')
target_prev_char_seq = tensor.lmatrix('target_prev_char_seq')
target_prev_char_aux = tensor.bmatrix('target_prev_char_aux')
target_bos_idx = tr_stream.trg_bos
target_space_idx = tr_stream.space_idx['target']
# Construct model
logger.info('Building RNN encoder-decoder')
encoder = BidirectionalEncoder(config['src_vocab_size'], config['enc_embed'], config['src_dgru_nhids'],
config['enc_nhids'], config['src_dgru_depth'], config['bidir_encoder_depth'])
decoder = Decoder(config['trg_vocab_size'], config['dec_embed'], config['trg_dgru_nhids'], config['trg_igru_nhids'],
config['dec_nhids'], config['enc_nhids'] * 2, config['transition_depth'], config['trg_igru_depth'],
config['trg_dgru_depth'], target_space_idx, target_bos_idx)
representation = encoder.apply(source_char_seq, source_sample_matrix, source_char_aux,
source_word_mask)
cost = decoder.cost(representation, source_word_mask, target_char_seq, target_sample_matrix,
target_resample_matrix, target_char_aux, target_char_mask,
target_word_mask, target_prev_char_seq, target_prev_char_aux)
logger.info('Creating computational graph')
cg = ComputationGraph(cost)
# Initialize model
logger.info('Initializing model')
encoder.weights_init = decoder.weights_init = IsotropicGaussian(
config['weight_scale'])
encoder.biases_init = decoder.biases_init = Constant(0)
encoder.push_initialization_config()
decoder.push_initialization_config()
for layer_n in range(config['src_dgru_depth']):
encoder.decimator.dgru.transitions[layer_n].weights_init = Orthogonal()
for layer_n in range(config['bidir_encoder_depth']):
encoder.children[1 + layer_n].prototype.recurrent.weights_init = Orthogonal()
if config['trg_igru_depth'] == 1:
decoder.interpolator.igru.weights_init = Orthogonal()
else:
for layer_n in range(config['trg_igru_depth']):
decoder.interpolator.igru.transitions[layer_n].weights_init = Orthogonal()
for layer_n in range(config['trg_dgru_depth']):
decoder.interpolator.feedback_brick.dgru.transitions[layer_n].weights_init = Orthogonal()
for layer_n in range(config['transition_depth']):
decoder.transition.transitions[layer_n].weights_init = Orthogonal()
encoder.initialize()
decoder.initialize()
# Print shapes
shapes = [param.get_value().shape for param in cg.parameters]
logger.info("Parameter shapes: ")
for shape, count in Counter(shapes).most_common():
logger.info(' {:15}: {}'.format(str(shape), count))
logger.info("Total number of parameters: {}".format(len(shapes)))
# Print parameter names
enc_dec_param_dict = merge(Selector(encoder).get_parameters(),
Selector(decoder).get_parameters())
logger.info("Parameter names: ")
for name, value in enc_dec_param_dict.items():
logger.info(' {:15}: {}'.format(str(value.get_value().shape), name))
logger.info("Total number of parameters: {}"
.format(len(enc_dec_param_dict)))
# Set up training model
logger.info("Building model")
training_model = Model(cost)
# Set up training algorithm
logger.info("Initializing training algorithm")
algorithm = GradientDescent(
cost=cost, parameters=cg.parameters,
step_rule=CompositeRule([StepClipping(config['step_clipping']),
eval(config['step_rule'])()])
)
# Set extensions
logger.info("Initializing extensions")
# Extensions
gradient_norm = aggregation.mean(algorithm.total_gradient_norm)
step_norm = aggregation.mean(algorithm.total_step_norm)
train_monitor = CostCurve([cost, gradient_norm, step_norm], config=config, after_batch=True,
before_first_epoch=True, prefix='tra')
extensions = [
train_monitor, Timing(),
Printing(every_n_batches=config['print_freq']),
FinishAfter(after_n_batches=config['finish_after']),
CheckpointNMT(config['saveto'], every_n_batches=config['save_freq'])]
# Set up beam search and sampling computation graphs if necessary
if config['hook_samples'] >= 1 or config['bleu_script'] is not None:
logger.info("Building sampling model")
generated = decoder.generate(representation, source_word_mask)
search_model = Model(generated)
_, samples = VariableFilter(
bricks=[decoder.sequence_generator], name="outputs")(
ComputationGraph(generated[config['transition_depth']])) # generated[transition_depth] is next_outputs
# Add sampling
if config['hook_samples'] >= 1:
logger.info("Building sampler")
extensions.append(
Sampler(model=search_model, data_stream=tr_stream,
hook_samples=config['hook_samples'], transition_depth=config['transition_depth'],
every_n_batches=config['sampling_freq'], src_vocab_size=config['src_vocab_size']))
# Add early stopping based on bleu
if config['bleu_script'] is not None:
logger.info("Building bleu validator")
extensions.append(
BleuValidator(source_char_seq, source_sample_matrix, source_char_aux,
source_word_mask, samples=samples, config=config,
model=search_model, data_stream=dev_stream,
normalize=config['normalized_bleu'],
every_n_batches=config['bleu_val_freq']))
# Reload model if necessary
if config['reload']:
extensions.append(LoadNMT(config['saveto']))
# Initialize main loop
logger.info("Initializing main loop")
main_loop = MainLoop(
model=training_model,
algorithm=algorithm,
data_stream=tr_stream,
extensions=extensions
)
# Train!
main_loop.run()
if __name__ == "__main__":
assert sys.version_info >= (3,4)
# Get configurations for model
configuration = configurations.get_config()
logger.info("Model options:\n{}".format(pprint.pformat(configuration)))
# Get data streams and call main
main(configuration, get_tr_stream(**configuration),
get_dev_stream(**configuration))