-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsolve_c.py
95 lines (79 loc) · 2.72 KB
/
solve_c.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
from utils import parseINPUT
from utils import generateSubmission, judgeFunction
from utils import bubbleSortReversedByvalue
import copy
import numpy as np
consider_range = 2
np.random.seed(0)
max_prob = 0.65
def solve(B_value: list, sum_value: dict, candidate_lib: list, curDay: int):
def average_value(lib):
if curDay + T[lib] < D:
return sum_valueCur[lib] / T[lib]
else:
return 0
def reduce_sum_value(sumvalue_list, choosed_lib, B_valueList):
for book in N[choosed_lib]:
if B_valueList[book] != 0:
for lib in book_dic[book]:
sumvalue_list[lib] -= B_valueList[book]
B_valueList[book] = 0
orderedLib = []
shippedBooks = []
Sum_gain = 0
B_valueCur = copy.deepcopy(B_value)
sum_valueCur = copy.deepcopy(sum_value)
# iteration begans
while curDay < D:
# get the best lib
value = list(map(average_value, candidate_lib))
# bubbleSortReversed(candidate_lib, cmp, consider_range)
curLib = -1
gain = 0
bubbleSortReversedByvalue(candidate_lib, value, consider_range)
prob = np.random.rand(1)
if prob < max_prob:
choose_index = 1
else:
choose_index = 0
curLib = candidate_lib[choose_index]
if curDay + T[curLib] < D:
gain = sum_valueCur[curLib]
else:
gain = 0
Sum_gain += gain
candidate_lib.remove(curLib)
reduce_sum_value(sum_valueCur, curLib, B_valueCur)
curDay += T[curLib]
if curDay < D:
shippedBooks += [N[curLib]]
orderedLib.append(curLib)
return orderedLib, shippedBooks, Sum_gain
if __name__ == "__main__":
input = parseINPUT("c_incunabula.txt")
B, L, D, B_value, N, T, M, N_n = input.values()
book_dic = {}
for i in range(L):
for book in N[i]:
if book in book_dic:
book_dic[book].append(i)
else:
book_dic[book] = [i]
sumValue = {}
B_valueCur = copy.deepcopy(B_value)
for lib in range(L):
value = 0
for book in N[lib]:
B_valueCur[book] = B_value[book]
value += B_valueCur[book]
sumValue[lib] = value
orderedLib, shippedBooks, Sum_gain = solve(B_valueCur, sumValue,
[i for i in range(L)], 0)
submission = generateSubmission(orderedLib, shippedBooks)
print(Sum_gain)
print(judgeFunction(submission, B_value))
# # write submission to file.
# with open(
# "c_answer_est_method_considerrange_%d_threshday_%d.txt" %
# (consider_range, thresh_day), "w") as f:
# f.write(submission)