-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_pipeline.py
77 lines (65 loc) · 2.78 KB
/
run_pipeline.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
""" Script for running population estimation pipeline.
Usage:
``python run_pipeline.py <path_to_config>`` (run from parent directory)
"""
import yaml
import sys
import os
import numpy as np
from shutil import copyfile
from matplotlib import pyplot as plt
from joblib import parallel_backend
# Assumes running from parent directory.
sys.path.append(os.path.abspath('./functions/'))
from population.preprocessing import preprocess_data
from population.data import build_dataset
from population.prediction import run_predictions, run_estimation
from embeddings.prediction import run_embeddings, append_precomputed
SEED = 42
np.random.seed(SEED)
prng = np.random.RandomState(SEED)
plt.style.use('ggplot')
if __name__ == "__main__":
with parallel_backend('threading', n_jobs=-1):
with open(sys.argv[1]) as file:
params = yaml.safe_load(file)
if params['preprocessing']['run']:
preprocess_data(params['preprocessing'])
else:
print("Skipping preprocessing")
df = build_dataset(params['dataset'])
if params['embedding']['run'] or (
params['estimation']['run'] and params['estimation']['embed']):
df = run_embeddings(df, params['embedding'], SEED)
else:
print("Skipping running embeddings")
if params['embedding']['append_precomputed']:
print('Appending precomputed embeddings... ', end='')
precomputed = params['embedding']['precomputed']
df = append_precomputed(
df, precomputed, 'zero_label_paths' not in params['dataset'])
print('done.')
if params['dataset']['save_dataset']:
dir, _ = params['dataset']['dataset_path'].rsplit('.', 1)
if not os.path.exists(dir):
os.makedirs(dir)
df.to_csv(params['dataset']['dataset_path'])
if params['prediction']['run']:
run_predictions(df, params['prediction'], prng)
else:
print("Skipping survey predictions")
if params['estimation']['run']:
params_dataset = params['dataset'].copy()
# May not want to predict over all rois from modelling stage.
params_dataset['rois'] = params['estimation'][
'rois']
df_full = build_dataset(params_dataset, survey_only=False)
# Rerun same embeddings from experiments on full dataset.
if params['estimation']['embed']:
df_full = run_embeddings(df_full, params['embedding'])
run_estimation(df, df_full, params['estimation'], prng)
exp_dir = params['prediction']['experiment_dir']
src = sys.argv[1]
dst = os.path.join(exp_dir, os.path.basename(src))
# Copy params to experiment dir.
copyfile(src, dst)