-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
230 lines (195 loc) · 8.52 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
import re
import string
from collections import Counter
from unidecode import unidecode
import traceback
import coloredlogs, logging
import datetime as dt
from datetime import datetime
logger = logging.getLogger(__name__)
coloredlogs.install(level='DEBUG', logger=logger)
def create_context_slices(context, max_length=512, stride=384):
"""
Splits a context into slices of length max_length, with a stride of stride.
"""
context_paras = context.split("\n")
context_tokens = []
slices = []
for i, para in enumerate(context_paras):
context_tokens += para.split(" ")
context_tokens.append("\n")
while len(context_tokens) > max_length:
slices.append(" ".join(context_tokens[:max_length]))
context_tokens = context_tokens[stride:]
slices.append(" ".join(context_tokens))
return slices
def extract_answer(answer_key, information):
if information[0] != "":
answer_infor = information[0] # only keep the first one
if answer_infor[answer_key] is not None:
if isinstance(answer_infor[answer_key], (list, tuple, frozenset)) and isinstance(answer_infor[answer_key][0], str):
predictions = list(answer_infor[answer_key])
elif isinstance(answer_infor[answer_key], (list, tuple, frozenset)) and isinstance(answer_infor[answer_key][0], dict):
predictions = list(answer_infor[answer_key][0].values())
elif isinstance(answer_infor[answer_key], dict):
predictions = list(answer_infor[answer_key].values())
else:
predictions = [answer_infor[answer_key]]
else:
predictions = [""]
else:
predictions = [""]
assert isinstance(predictions, list), predictions
return predictions
def extract_code_from_string(string):
# Written by chatgpt
pattern = r"```python(.*?)```"
matches = re.findall(pattern, string, re.DOTALL)
if matches:
return "\n".join(matches)
return None
def clean_str(p):
p = unidecode(p)
try:
p = p.encode().decode("unicode-escape").encode("latin1").decode("utf-8")
except:
p = p.encode().decode("ISO-8859-1").encode("latin1").decode("utf-8")
# p = re.sub('([a-zA-Z])([.,!?()])', r'\1\2 ', p)
# p = re.sub('\s{2,}', ' ', p)
p = re.sub(r'([a-zA-Z])([,.!?()])', r'\1 \2', p)
p = re.sub(r'([,.!?()])([a-zA-Z])', r'\1 \2', p)
return p
def f1_score(prediction, ground_truth):
ZERO_METRIC = (0, 0, 0)
if prediction in ['yes', 'no', 'noanswer'] and prediction != ground_truth:
return ZERO_METRIC
if ground_truth in ['yes', 'no', 'noanswer'] and prediction != ground_truth:
return ZERO_METRIC
prediction_tokens = prediction.split()
ground_truth_tokens = ground_truth.split()
common = Counter(prediction_tokens) & Counter(ground_truth_tokens)
num_same = sum(common.values())
if num_same == 0:
return ZERO_METRIC
precision = 1.0 * num_same / len(prediction_tokens)
recall = 1.0 * num_same / len(ground_truth_tokens)
f1 = (2 * precision * recall) / (precision + recall)
return f1, precision, recall
def normalize_answer(s):
def remove_articles(text):
return re.sub(r"\b(a|an|the)\b", " ", text)
def white_space_fix(text):
return " ".join(text.split())
def replace_dash_with_space(text):
return " ".join(text.split("-"))
def remove_punc(text):
exclude = set(string.punctuation)
return "".join([ch for ch in text if ch not in exclude])
def lower(text):
if isinstance(text, int) or isinstance(text, float):
text = str(text)
return unidecode(text.lower())
return white_space_fix(remove_articles(remove_punc(replace_dash_with_space(lower(s)))))
def get_metrics(preds, gt_answer):
if isinstance(gt_answer, str):
gt_answer = [gt_answer]
if isinstance(preds, str):
preds = [preds]
if len(preds) == 0 and len(gt_answer) != 0:
return {'reward': 0, 'em': 0, 'f1': 0}
if len(preds) != 0 and len(gt_answer) == 0:
return {'reward': 0, 'em': 0, 'f1': 0}
em = 0
f1 = 0
for pred in preds:
pred = normalize_answer(pred)
if pred == "":
if gt_answer[0] == "":
return {'reward': 1, 'em': 1, 'f1': 1.}
else:
return {'reward': 0, 'em': 0, 'f1': 0}
for gt in gt_answer:
gt = normalize_answer(gt)
em = max(em, int(pred == gt))
f1 = max(f1, f1_score(pred, gt)[0])
if em:
return {'reward': 1, 'em': 1, 'f1': 1.}
return {'reward': em, 'em': em, 'f1': f1}
def calc_time_iou(code):
time_type = None
locals_ = {'information': []}
try:
exec(code[0], globals(), locals_)
query = locals_.get('query')
answer_key = locals_.get('answer_key')
except Exception as e:
logger.error("Failed to get origin query")
query = None
answer_key = None
for c in code[1:]:
try:
exec(c, globals(), locals_)
except Exception as e:
logger.error(f'Failed to execute code:\n{c}')
print("Error Type:", type(e))
print("Error Message:", e)
print(f"Traceback:\n{traceback.format_exc()}")
continue
default_start = datetime(1, 1, 1)
default_end = datetime(3000, 1, 1)
# query = locals_.get('query')
information = locals_.get('information')
if query is None:
return "object", information
if "time" not in query or query['time'] is None or (("start" in query['time'] and "end" in query['time']) and (query['time']['start'] is None and query['time']['end'] is None)):
query['time'] = {'start': default_start, 'end': default_end}
time_type = 'overlap'
elif isinstance(query['time'], datetime):
query['time'] = {'start': query['time'], 'end': query['time'] + dt.timedelta(365)}
time_type = 'overlap'
elif 'start' not in query['time'] or query['time']['start'] is None:
time_type = 'before or end'
elif 'end' not in query['time'] or query['time']['end'] is None:
time_type = 'after or start'
else:
time_type = 'overlap'
information = [x for x in information if 'subject' in x and 'object' in x and 'relation' in x and x[answer_key] is not None] #and x['time'] is not None]
if len(information) == 0:
return "object", [""]
for idx, ex in enumerate(information):
try:
if "time" not in ex or ex['time'] is None or (("start" in ex['time'] and "end" in ex['time']) and (ex['time']['start'] is None and ex['time']['end'] is None)):
ex['time'] = {'start': default_start, 'end': default_end}
elif isinstance(ex['time'], datetime):
ex['time'] = {'start': ex['time'], 'end': ex['time'] + dt.timedelta(365)}
elif len(ex['time']) == 0:
ex['time'] = {'start': default_start, 'end': default_end}
if 'start' not in ex['time'] or ex['time']['start'] is None:
ex['time'].update(start=default_start)
if 'end' not in ex['time'] or ex['time']['end'] is None:
ex['time'].update(end=default_end)
except Exception as e:
print("Error Type:", type(e))
print("Error Message:", e)
print(f"Traceback:\n{traceback.format_exc()}")
print(ex)
overlapped = False
information = [x for x in information if x['time'] is not None]
if time_type == "overlap":
for idx, ex in enumerate(information):
latest_start = max(query['time']['start'], ex['time']['start'])
earliest_end = min(query['time']['end'], ex['time']['end'])
delta = (earliest_end - latest_start).days + 1
overlap = max(0, delta)
if overlap > 0:
overlapped = True
time_union = max((query['time']['end'] - query['time']['start']).days + (ex['time']['end'] - ex['time']['start']).days - overlap, 1)
ex.update(overlap=overlap)
ex.update(time_union=time_union)
ex.update(time_iou=overlap / time_union)
information = sorted(information, key=lambda x: (x['time_iou'], x['overlap']), reverse=True)
elif time_type == "after or start":
information = sorted(information, key=lambda x: abs((x['time']['start'] - query['time']['start']).days))
elif time_type == "before or end":
information = sorted(information, key=lambda x: abs((x['time']['end'] - query['time']['end']).days))
return answer_key, information