-
Notifications
You must be signed in to change notification settings - Fork 45
/
Copy pathplot_graphs.py
443 lines (380 loc) · 16.5 KB
/
plot_graphs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
import seaborn as sns; sns.set()
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np
import matplotlib.cm as cm
import hashlib
from scipy import stats
# diverging color-blind colors taken from: https://github.com/drammock/colorblind/blob/master/colorblind.py
# @author: drmccloy
# Created on Thu Sep 1 17:07:57 2016
# License: MIT License
def diverging_colors(n):
if n < 3:
raise ValueError('Minimum number of diverging colors is 3.')
elif n > 11:
raise ValueError('Maximum number of diverging colors is 11.')
cols = ['#3D52A1', '#3A89C9', '#008BCE', '#77B7E5', '#99C7EC', '#B4DDF7',
'#E6F5FE', '#FFFAD2', '#FFE3AA', '#F9BD7E', '#F5A275', '#ED875E',
'#D03232', '#D24D3E', '#AE1C3E']
indices = [[4, 7, 10],
[2, 5, 9, 12],
[2, 5, 7, 9, 12],
[1, 4, 6, 8, 10, 13],
[1, 4, 6, 7, 8, 10, 13],
[1, 3, 5, 6, 8, 9, 11, 13],
[1, 3, 5, 6, 7, 8, 9, 11, 13],
[0, 1, 3, 5, 6, 8, 9, 11, 13, 14],
[0, 1, 3, 5, 6, 7, 8, 9, 11, 13, 14]]
return [cols[ix] for ix in indices[n - 3]]
def sequential_colors(n):
if n < 3:
raise ValueError('Minimum number of sequential colors is 3.')
elif n > 9:
raise ValueError('Maximum number of sequential colors is 9.')
cols = ['#FFFFE5', '#FFFBD5', '#FFF7BC', '#FEE391', '#FED98E', '#FEC44F',
'#FB9A29', '#EC7014', '#D95F0E', '#CC4C02', '#993404', '#8C2D04',
'#662506']
indices = [[2, 5, 8],
[1, 3, 6, 9],
[1, 3, 6, 8, 10],
[1, 3, 5, 6, 8, 10],
[1, 3, 5, 6, 7, 9, 10],
[0, 2, 3, 5, 6, 7, 9, 10],
[0, 2, 3, 5, 6, 7, 9, 10, 12]]
return [cols[ix] for ix in indices[n - 3]]
def rainbow_colors(n):
if n < 4:
raise ValueError('Minimum number of rainbow colors is 4.')
elif n > 12:
raise ValueError('Maximum number of rainbow colors is 12.')
c = ['#781C81', '#404096', '#57A3AD', '#529DB7', '#63AD99', '#6DB388',
'#E39C37', '#D92120']
cols = [[c[1], c[2], '#DEA73A', c[7]],
[c[1], c[3], '#7DB874', c[6], c[7]],
[c[1], '#498CC2', c[4], '#BEBC48', '#E68B33', c[7]],
[c[0], '#3F60AE', '#539EB6', c[5], '#CAB843', '#E78532', c[7]],
[c[0], '#3F56A7', '#4B91C0', '#5FAA9F', '#91BD61', '#D8AF3D',
'#E77C30', c[7]],
[c[0], '#3F4EA1', '#4683C1', c[2], c[5], '#B1BE4E', '#DFA53A',
'#E7742F', c[7]],
[c[0], '#3F479B', '#4277BD', c[3], '#62AC9B', '#86BB6A', '#C7B944',
c[6], '#E76D2E', c[7]],
[c[0], c[1], '#416CB7', '#4D95BE', '#5BA7A7', '#6EB387', '#A1BE56',
'#D3B33F', '#E59435', '#E6682D', c[7]],
[c[0], '#413B93', '#4065B1', '#488BC2', '#55A1B1', c[4], '#7FB972',
'#B5BD4C', '#D9AD3C', '#E68E34', '#E6642C', c[7]]
]
return cols[n - 4]
colors = rainbow_colors(9)
def get_name2color(names, n, seed=0):
name2color = {}
names = np.array(names)
rdm = np.random.RandomState(seed)
rdm.shuffle(names)
for i, name in enumerate(names):
name2color[name] = colors[i]
return name2color
factor=100
mnist = pd.read_csv('./results/MNIST_sparse_summary.csv')
print(mnist['Sparsity'])
mnist['Sparsity'] *= factor
mnist['Full Dense'] *= factor
mnist['Sparse Momentum'] *= factor
mnist['Dynamic Sparse'] *= factor
mnist['SET'] *= factor
mnist['DEEP-R'] *= factor
mnist['error1'] *= factor
mnist['error2'] *= factor
mnist['error3'] *= factor
mnist['error4'] *= factor
mnist['error5'] *= factor
mnist['Sparsity'] = 100-mnist['Sparsity']
#ax = sns.lineplot(x='Sparsity', y='Full Dense',data=mnist, label='Full Dense', palette=sns.color_palette("Paired", n_colors=3))
#ax = sns.lineplot(x='Sparsity', y='Dynamic Sparse',data=mnist, label='Dynamic Sparse', palette=sns.color_palette("Paired", n_colors=3))
#ax = sns.lineplot(x='Sparsity', y='Sparse Momentum',data=mnist, label='Sparse Momentum', palette=sns.color_palette("Paired", n_colors=3))
#ax.invert_xaxis()
#ax.xaxis.set_major_locator(plt.FixedLocator(mnist['Sparsity']))
percentile95 = 1.96
# color blind colors; optimized for deuteranopia/protanopia; work less well for tritanopia
orange = np.array([230, 159, 0, 255])/255.
blue = np.array([86, 180, 233, 255])/255.
purple = np.array([73, 0, 146, 255])/255.
yellow = np.array([204, 121, 167, 255])/255.
plt.plot(mnist['Sparsity'], mnist['Full Dense'], color='black')
plt.plot(mnist['Sparsity'], mnist['Dynamic Sparse'], color=blue)
plt.plot(mnist['Sparsity'], mnist['Sparse Momentum'], color=orange)
plt.plot(mnist['Sparsity'], mnist['SET'], color=purple)
plt.plot(mnist['Sparsity'], mnist['DEEP-R'], color=yellow)
plt.legend()
plt.errorbar(mnist['Sparsity'], mnist['Full Dense'], yerr=mnist['error1']*percentile95, fmt='.k', capsize=5, elinewidth=1)
plt.errorbar(mnist['Sparsity'], mnist['Dynamic Sparse'], yerr=mnist['error2']*percentile95, fmt='.k', ecolor=blue, capsize=5, elinewidth=1)
plt.errorbar(mnist['Sparsity'], mnist['Sparse Momentum'], yerr=mnist['error3']*percentile95, fmt='.k', ecolor=orange, capsize=5, elinewidth=1)
plt.errorbar(mnist['Sparsity'], mnist['SET'], yerr=mnist['error4']*percentile95, fmt='.k', ecolor=purple, capsize=5, elinewidth=1)
plt.errorbar(mnist['Sparsity'], mnist['DEEP-R'], yerr=mnist['error5']*percentile95, fmt='.k', ecolor=yellow, capsize=5)
#plt.yscale('log')
plt.ylim(0.975*factor, 0.990*factor)
plt.xlim(0.00*factor, 0.21*factor)
plt.xticks([1, 2, 3, 4, 5, 10])
plt.ylabel("Test Accuracy")
plt.xlabel('Weights (%)')
plt.title("LeNet 300-100 on MNIST")
#plt.show()
plt.clf()
data = pd.read_csv('./results/WRN-28-2_results_summary.csv')
print(data['Sparsity'])
data['Sparsity'] *= factor
data['Full Dense'] /= factor
data['Sparse Momentum'] /= factor
data['Dynamic Sparse'] /= factor
data['SET'] /= factor
data['DEEP-R'] /= factor
data['error1'] /= factor
data['error2'] /= factor
data['error3'] /= factor
data['error4'] /= factor
data['error5'] /= factor
data['Sparsity'] = 100-data['Sparsity']
percentile95 = 1.96
plt.plot(data['Sparsity'], data['Full Dense'], color='black')
plt.plot(data['Sparsity'], data['Dynamic Sparse'], color=blue)
plt.plot(data['Sparsity'], data['Sparse Momentum'], color=orange)
plt.plot(data['Sparsity'], data['SET'], color=purple)
plt.plot(data['Sparsity'], data['DEEP-R'], color=yellow)
#plt.legend()
plt.errorbar(data['Sparsity'], data['Full Dense'], yerr=data['error1']*percentile95, fmt='.k', capsize=5)
plt.errorbar(data['Sparsity'], data['Dynamic Sparse'], yerr=data['error2']*percentile95, fmt='.k', ecolor=blue, capsize=5)
plt.errorbar(data['Sparsity'], data['Sparse Momentum'], yerr=data['error3']*percentile95, fmt='.k', ecolor=orange, capsize=5)
plt.errorbar(data['Sparsity'], data['SET'], yerr=data['error4']*percentile95, fmt='.k', ecolor=purple, capsize=5)
plt.errorbar(data['Sparsity'], data['DEEP-R'], yerr=data['error5']*percentile95, fmt='.k', ecolor=yellow, capsize=5)
plt.ylim(0.927*factor, 0.95*factor)
plt.xlim(0.08*factor, 0.52*factor)
plt.xticks([10, 20, 30, 40, 50])
plt.ylabel("Test Accuracy")
plt.xlabel('Weights (%)')
plt.title("WRN 28-2 on CIFAR-10")
#plt.show()
plt.clf()
data_vgg = pd.read_csv('./results/sensitivity_momentum_vgg-d.csv')
data_alexnet = pd.read_csv('./results/sensitivity_momentum_alexnet-s.csv')
data_vgg = data_vgg.iloc[1:, :]
data_alexnet = data_alexnet.iloc[1:, :]
data_vgg.iloc[0:, 1:] *= 100.0
data_alexnet.iloc[0:, 1:] *= 100.0
data_alexnet.loc[0:, 'sparse SE'] *= 1.96 # 95% confidence intervals
data_alexnet.loc[0:, 'dense SE'] *= 1.96
data_vgg.loc[0:, 'sparse SE'] *= 1.96 # 95% confidence intervals
data_vgg.loc[0:, 'dense SE'] *= 1.96
print(data_vgg)
print(data_alexnet)
plt.plot(data_vgg['momentum'], data_vgg['sparse mean'], color='black', label='VGG Sparse momentum')
plt.plot(data_vgg['momentum'], data_vgg['dense mean'], color=orange, label='VGG Dense control')
#plt.plot(data_alexnet['momentum'], data_alexnet['sparse mean'], color=purple, label='AlexNet Sparse momentum')
#plt.plot(data_alexnet['momentum'], data_alexnet['dense mean'], color=yellow, label='AlexNet Dense control')
#plt.legend()
#plt.legend(bbox_to_anchor=(0, 1), loc='center right', ncol=1)
#plt.legend(bbox_to_anchor=(1.04,1), mode='expand', loc="upper left")
#l1 = plt.legend(bbox_to_anchor=(1.04,1), borderaxespad=0)
#l2 = plt.legend(bbox_to_anchor=(1.04,0), loc="lower left", borderaxespad=0)
#l3 = plt.legend(bbox_to_anchor=(1.04,0.5), loc="center left", borderaxespad=0)
#l4 = plt.legend(bbox_to_anchor=(0,-0.40,1,-0.2), loc="lower left",
#mode="expand", borderaxespad=0, ncol=2)
plt.legend()
#l5 = plt.legend(bbox_to_anchor=(1,0), loc="lower right",
#bbox_transform=fig.transFigure, ncol=3)
#l6 = plt.legend(bbox_to_anchor=(0.4,0.8), loc="upper right")
plt.errorbar(data_vgg['momentum'], data_vgg['sparse mean'], yerr=data_vgg['sparse SE'], fmt='.k', capsize=5)
plt.errorbar(data_vgg['momentum'], data_vgg['dense mean'], yerr=data_vgg['dense SE'], fmt='.k', ecolor=orange, capsize=5)
#plt.errorbar(data_alexnet['momentum'], data_alexnet['sparse mean'], yerr=data_alexnet['sparse SE'], fmt='.k', ecolor=purple, capsize=5)
#plt.errorbar(data_alexnet['momentum'], data_alexnet['dense mean'], yerr=data_alexnet['dense SE'], fmt='.k', ecolor=yellow, capsize=5)
#plt.fill_between(data_vgg['momentum'], data_vgg['sparse mean'] - data_vgg['sparse SE'], data_vgg['sparse mean']+data_vgg['sparse SE'])#, fmt='.k', ecolor=orange, capsize=5)
#plt.fill_between(data_vgg['momentum'], data_vgg['dense mean'] - data_vgg['dense SE'], data_vgg['dense mean']+data_vgg['dense SE'])#, fmt='.k', ecolor=orange, capsize=5)
#plt.ylim(0.927*factor, 0.95*factor)
plt.xlim(0.49, 0.99)
plt.xticks([0.95, 0.9, 0.8, 0.7, 0.6, 0.5])
plt.ylabel("Test Error")
plt.xlabel('Momentum')
plt.title("Momentum Parameter Sensitivity")
#plt.subplots_adjust(bottom=-0.7)
plt.tight_layout()#rect=[0,0.0,1.0,1])
#plt.show()
plt.clf()
data_alexnet.loc[0:, 'sparse mean'] -= data_alexnet.loc[2, 'sparse mean']
data_alexnet.loc[0:, 'dense mean'] -= data_alexnet.loc[2, 'dense mean']
data_vgg.loc[0:, 'sparse mean'] -= data_vgg.loc[2, 'sparse mean']
data_vgg.loc[0:, 'dense mean'] -= data_vgg.loc[2, 'dense mean']
sparse_data = []
sparse_data += data_vgg.loc[:, 'sparse mean'].tolist()
sparse_data += data_alexnet.loc[:, 'sparse mean'].tolist()
dense_data = []
dense_data += data_vgg.loc[:, 'dense mean'].tolist()
dense_data += data_alexnet.loc[:, 'dense mean'].tolist()
dense_data = np.array(dense_data)
print(stats.levene(sparse_data, dense_data))
print(stats.normaltest(sparse_data))
print(stats.normaltest(dense_data))
print(stats.normaltest(np.log10(dense_data+1-dense_data.min())))
print(stats.wilcoxon(sparse_data, dense_data))
data_vgg = pd.read_csv('./results/sensitivity_prune_rate_vgg-d.csv')
data_alexnet = pd.read_csv('./results/sensitivity_prune_rate_alexnet-s.csv')
data_vgg.iloc[0:, 1:] *= 100.0
data_alexnet.iloc[0:, 1:] *= 100.0
data_alexnet.loc[0:, 'cosine SE'] *= 1.96 # 95% confidence intervals
data_alexnet.loc[0:, 'linear SE'] *= 1.96
data_vgg.loc[0:, 'cosine SE'] *= 1.96 # 95% confidence intervals
data_vgg.loc[0:, 'linear SE'] *= 1.96
plt.plot(data_vgg['prune_rate'], data_vgg['cosine mean'], color='black', label='Cosine annealing')
plt.plot(data_vgg['prune_rate'], data_vgg['linear mean'], color=orange, label='Linear annealing')
plt.legend()
plt.plot(data_alexnet['prune_rate'], data_alexnet['cosine mean'], color='black')#, label='Cosine annealing')
plt.plot(data_alexnet['prune_rate'], data_alexnet['linear mean'], color=orange)#, label='Linear annealing')
plt.annotate('AlexNet-s', xy=(0.25, 13.7), xytext=(0.2, 10),
arrowprops=dict(facecolor='black', shrink=0.05))
plt.annotate('VGG16-D', xy=(0.45, 7.0), xytext=(0.40, 10),
arrowprops=dict(facecolor='black', shrink=0.05))
plt.errorbar(data_vgg['prune_rate'], data_vgg['cosine mean'], yerr=data_vgg['cosine SE'], fmt='.k', capsize=5)
plt.errorbar(data_vgg['prune_rate'], data_vgg['linear mean'], yerr=data_vgg['linear SE'], fmt='.k', ecolor=orange, capsize=5)
plt.errorbar(data_alexnet['prune_rate'], data_alexnet['cosine mean'], yerr=data_alexnet['cosine SE'], fmt='.k', capsize=5)
plt.errorbar(data_alexnet['prune_rate'], data_alexnet['linear mean'], yerr=data_alexnet['linear SE'], fmt='.k', ecolor=orange, capsize=5)
#plt.ylim(0.927*factor, 0.95*factor)
#plt.xlim(0.49, 0.99)
plt.xticks([0.7, 0.8, 0.6, 0.5, 0.4, 0.3, 0.2])
plt.ylabel("Test Error")
plt.xlabel('Prune Rate')
plt.title("Prune Rate Parameter Sensitivity")
#plt.subplots_adjust(bottom=-0.7)
plt.tight_layout()#rect=[0,0.0,1.0,1])
#plt.show()
plt.clf()
d = pd.read_csv('./results/MNIST_compression_comparison_lenet300-100.csv')
print(d)
labels = d.loc[:, 'name'].tolist()[1:]
unique = []
# necessary to get same colors for the same seed
for lbl in labels:
if lbl not in unique:
unique.append(lbl)
labels = unique
fig, ax = plt.subplots()
#ax.set_facecolor('white')
x, y = d['density'], d['error']
i = 0
name2color = get_name2color(labels, len(labels), seed=4)
for lbl in labels:
color = name2color[lbl]
if lbl == 'Sparse Momentum': continue
cond = d['name'] == lbl
plt.plot(x[cond], y[cond], linestyle='none', marker='o', label=lbl, color=color)
cond = d['name'] == 'Sparse Momentum'
plt.plot(x[cond], y[cond], color=orange, label='Sparse Momentum')
plt.plot([0,9.0], [1.34, 1.34], label='Dense (100% Weights)', color='black')
plt.legend()
plt.errorbar(x[cond], y[cond], yerr=d['sm SE'][cond]*1.96, fmt='.k', capsize=5, ecolor=orange)
plt.errorbar([0, 1, 2, 3, 4, 5, 6, 7, 8, 9], [1.34]*10, yerr=[0.011*1.96]*10, fmt='.k', capsize=5, ecolor='black')
names = [\
'LeCun 1989',
'Dong 2017',
'Carreira-Perpinan 2018',
'Lee 2019',
'Ullrich 2017',
'Guo 2016',
'Han 2015',
'Lee 2019',
'Molchanov 2017',
'Gomez 2018',
'Gomez 2018']
diff_pos = [\
(-0.7, 0.001),
(-0.65, 0.07),
(0, 0),
(0, 0),
(0, 0),
(0.1, -0.13),
(-0.7, 0),
(0, 0),
(-0.65, -0.15),
(-1.0, -0.1),
(-0.0, -0.0)]
print(len(diff_pos), len(names))
print(d)
i = 0
for name, x, y, diff in zip(d.loc[:, 'author'], d.loc[:, 'density'], d.loc[:, 'error'], diff_pos):
print(name)
if name == 'LeCun 1989': continue
if name == 'Dettmers 2019': continue
#if name == 'Dong 2017':
# ax.annotate(name, xy=(x, y), xytext=(0.5, 1.6),
# arrowprops=dict(color='black', facecolor='black',arrowstyle="-", \
# connectionstyle="angle3", lw=1), size=10)
# #arrowprops=dict(facecolor='black', shrink=0.01))
else:
#color = cm.get_cmap(name=name, lut=10)
ax.annotate(name, (x+diff[0]-0.01, y+diff[1]), size=10)
i += 1
plt.ylabel("Test Error")
plt.xlabel('Weights (%)')
plt.title("LeNet 300-100 on MNIST")
#plt.subplots_adjust(bottom=-0.7)
plt.xlim(0.8, 10.5)
plt.tight_layout()#rect=[0,0.0,1.0,1])
plt.show()
plt.clf()
d = pd.read_csv('./results/MNIST_compression_comparison_lenet5.csv')
print(d)
d = d.iloc[1:, :]
labels = set(d.loc[:, 'name'].tolist())
fig, ax = plt.subplots()
x, y = d['density'], d['error']
for lbl in labels:
if lbl == 'Sparse Momentum': continue
color = name2color[lbl]
cond = d['name'] == lbl
plt.plot(x[cond], y[cond], linestyle='none', marker='o', label=lbl, color=color)
cond = d['name'] == 'Sparse Momentum'
plt.plot(x[cond], y[cond], color=orange, label='Sparse Momentum')
plt.plot([0,10.0], [0.58, 0.58], label='Dense (100% Weights)', color='black')
#plt.legend()
plt.errorbar(x[cond], y[cond], yerr=d['sm SE'][cond]*1.96, fmt='.k', capsize=5, ecolor=orange)
plt.errorbar([1, 2, 3, 4, 5, 6, 7, 8, 9, 10], [0.58]*10, yerr=[0.01*1.96]*10, fmt='.k', capsize=5, ecolor='black')
names = [\
#'LeCun 1989',
'Dong 2017',
'Lee 2019',
'Ullrich 2017',
'Guo 2016',
'Han 2015',
'Lee 2019',
'Carreira-Perpinan 2018',
'Molchanov 2017',
'Gomez 2018',
'Gomez 2018']
diff_pos = [\
#(-0.7, 0.001),
(-0.5, 0.0),
(0, 0.03),
(0, 0),
(0.1, 0.00),
(-0.7, -0.05),
(0, 0.02),
(0.2, -0.05),
(-0.35, -0.09),
(-1.2, 0.00),
(-1.0, 0.00)]
print(len(diff_pos), len(names))
for name, x, y, diff in zip(d.loc[:, 'author'], d.loc[:, 'density'], d.loc[:, 'error'], diff_pos):
print(name, x, y)
if name == 'Dettmers 2019': continue
#if name == 'Lee 2018':
# ax.annotate(name, xy=(x, y), xytext=(0.6, 1.2),
# arrowprops=dict(color='black', facecolor='black',arrowstyle="-", \
# connectionstyle="arc3", lw=1), size=10)
#else:
# ax.annotate(name, (x+diff[0]-0.01, y+diff[1]), size=10)
ax.annotate(name, (x+diff[0]-0.01, y+diff[1]), size=10)
plt.ylabel("Test Error")
plt.xlabel('Weights (%)')
plt.xlim(0.0, 10.5)
plt.title("LeNet-5 Caffe on MNIST")
#plt.subplots_adjust(bottom=-0.7)
plt.tight_layout()#rect=[0,0.0,1.0,1])
plt.show()