-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnew_report_summary-v2.1.py
2272 lines (2192 loc) · 135 KB
/
new_report_summary-v2.1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#!/usr/bin/env python
import argparse
import pandas as pd
import os
import docx
import logging
import re
from multiprocessing import Pool
from docx.shared import RGBColor
from docx.shared import Pt
from docx.oxml.ns import qn
from docx.table import _Cell
from docx.oxml import OxmlElement
from docx.shared import Cm
from docx.enum.text import WD_ALIGN_PARAGRAPH
from docx.enum.table import WD_ALIGN_VERTICAL
from docxtpl import DocxTemplate, RichText
from docx.oxml.ns import nsdecls
from docx.oxml import parse_xml
from docx.shared import Inches
import datetime
import copy
# 打印出运行的时间
time1 = '运行时间:' + str(datetime.datetime.now())
print(time1)
# 设定监控日志输出文件名和内容形式
logging.basicConfig(format='%(asctime)s - %(message)s', filename='/mnt/c/Users/luping/Desktop/报告流程/TNP/OUTPUT/运行信息.txt', filemode='a', level=logging.INFO)
# 参数的导入与处理
parser = argparse.ArgumentParser()
parser.add_argument('-i', "--result_excel", required=True, help="the excel file with the result selected")
parser.add_argument('-b', "--database", type=str, default='/mnt/c/Users/luping/Desktop/报告流程/TNP/病原数据库/思可愈数据库-TNP-Seq病原菌测序项目2021.05.18.xlsx',help="database provided by the Ministry of Medicine")
parser.add_argument('-w', "--word_template_folder", type=str, default='/mnt/c/Users/luping/Desktop/报告流程/TNP/报告模板/word/',help="folder where all word report templates are located")
parser.add_argument('-e', "--excel_template_folder", type=str, default='/mnt/c/Users/luping/Desktop/报告流程/TNP/报告模板/excel/',help="folder where all excel report templates are located")
parser.add_argument('-n', "--processes_number", type=int, default=5,help="并行进程数目")
parser.add_argument('-c', "--complex_excel", type=str, default='/mnt/c/Users/luping/Desktop/报告流程/TNP/mycobacterium_tuberculosis_complex.xlsx',help="结核分支杆菌复合群包含微生物表格")
parser.add_argument('-s', "--summary_excel", type=str, default='/mnt/c/Users/luping/Desktop/报告流程/TNP/OUTPUT/',help="summary documents before processing")
parser.add_argument('-o', "--output_dir", type=str, default='/mnt/c/Users/luping/Desktop/报告流程/TNP/OUTPUT/',help="supplement sample result")
parser.add_argument('-B', "--barcode_picutre", type=str, default='/mnt/c/Users/luping/Desktop/报告流程/RD/barcode/',help="条形码图片所在")
args = parser.parse_args()
info_client = pd.read_excel(args.result_excel).fillna('NA')
Interpretation = pd.read_excel(args.result_excel, sheet_name='species_report').fillna('NA')
sheet = pd.read_excel(args.result_excel, sheet_name=None)
if 'resistance_report' in list(sheet.keys()):
drug_resistance_df = pd.read_excel(args.result_excel, sheet_name='resistance_report').fillna('NA')
if drug_resistance_df.shape[0] == 0:
drug_resistance_df = 0
else:
drug_resistance_df = 0
# print(drug_resistance_df)
picture_dtat_df = pd.read_excel(args.result_excel, sheet_name='length_report').fillna('NA')
medical_DB = pd.read_excel(args.database).fillna('NA')
result_file_name = args.result_excel.split("/")[-1].lower()
complex_df = pd.read_excel(args.complex_excel)
barcode_picture_path = args.barcode_picutre
####################################################
# 定义函数
# 判断是否为结核分枝杆菌复合群
def change_bacteria_list(bacteria_list: list):
new_bacteria_list = []
for bacteria in bacteria_list:
compare_bacteria: str = Nor(bacteria)
find_complex_df = complex_df[complex_df['name'] == compare_bacteria]
if find_complex_df.shape[0] == 0:
new_bacteria_list.append(bacteria)
else:
new_bacteria_list.append('Mycobacterium tuberculosis complex')
return new_bacteria_list
# 标准化输入内容名称所用函数(变小写)
def Nor(x: str
) -> str:
first: str = x.strip()
standardized_string: str = " ".join(first.split())
standardized_string: str = standardized_string.lower()
return standardized_string
# 标准化输入列名称所用函数
def Nor_col(x: str
) -> str:
first: str = str(x).strip()
standardized_string: str = " ".join(first.split())
return standardized_string
def make_picture(length_colname: str,
picture_dtat_df: pd.DataFrame,
) -> None:
R_out = length_colname + '.r'
rscript = f'''#! /path/to/Rscript
library(openxlsx)
library(ggplot2)
data<- read.xlsx('{args.result_excel}', sheet='length_report')
names(data)[names(data) == '{length_colname}'] <- 'Frequency'
data <- data[c(1:8),]
row.names(data) <- as.list(data)$length
read_length_hist <- ggplot(data, mapping=aes(x=rownames(data), y=Frequency)) +
geom_bar(stat="identity", fill="#E1EFF9", colour="#E1EFF9") +
scale_x_discrete(limits=factor(rownames(data))) +
labs(x="length(bp)", y="ratio(%)") +
theme(panel.grid=element_blank(), panel.background=element_rect(color="black", fill="transparent")) +
theme(axis.text =element_text(size=7))
ggsave(file="{length_colname}.png",read_length_hist, width = 6, height = 3)
'''
out = open(R_out, 'w')
out.write(rscript)
out.close()
cmd = "Rscript " + R_out
os.system(cmd)
os.remove(R_out)
def move_picture(doc,
png_name: str
) -> None:
table = doc.add_table(rows=1, cols=3)
cell = table.cell(0, 1)
ph = cell.paragraphs[0]
run = ph.add_run()
run.add_picture(png_name)
target = None
for paragraph in doc.paragraphs:
paragraph_text = paragraph.text
if paragraph_text.endswith('序列长度统计'):
# print(paragraph_text)
target = paragraph
break
move_table_after(table, target)
# os.remove(png_name)
return doc
# 查询检测项目的简称
def project_shorthand(sample_code: str) -> str:
project_name = info_client.loc[info_client['样本编号'] == sample_code, '检测项目'].iloc[0].rstrip()
# print(project_name)
if '呼吸' in project_name:
hand: str = 'HX'
elif '血液' in project_name:
hand: str = 'XY'
elif '神经' in project_name:
hand: str = 'SJ'
elif '胸腹' in project_name:
hand: str = 'XF'
elif '泌尿' in project_name:
hand: str = 'MN'
elif '消化' in project_name:
hand: str = 'XH'
elif '创口' in project_name:
hand: str = 'CK'
elif '眼科' in project_name:
hand: str = 'YB'
else:
name = info_client.loc[info_client['样本编号'] == sample_code, '患者姓名'].iloc[0]
logging.info(f'{name}的检测项目填写错误导致报告生成失败!')
# print(hand)
return hand
# 在数据库中搜索表格信息
def find_info(
result_list: list,
sample_code: str,
Interpretation: pd.DataFrame,
info_client: pd.DataFrame,
medical_DB: pd.DataFrame,
all_bac: list,
mic_dict: dict,
supplementary_results: int
) -> list:
bac_list: list = []
sample_result_list: list = []
column_P = info_client.loc[info_client['样本编号'] == sample_code, 'barcode'].iloc[0] + '_P_' + project_shorthand(sample_code) + '_' + str(info_client.loc[info_client['样本编号'] == sample_code, '患者姓名'].iloc[0]) + '_' + sample_code
column_R = info_client.loc[info_client['样本编号'] == sample_code, 'barcode'].iloc[0] + '_R_' + project_shorthand(sample_code) + '_' + str(info_client.loc[info_client['样本编号'] == sample_code, '患者姓名'].iloc[0]) + '_' + sample_code
for bac_name in result_list:
compare_bac_name: str = Nor(bac_name)
dic_bac: dict = {}
try:
dic_bac['中文名'] = medical_DB.loc[medical_DB['英文名称'] == compare_bac_name, '种'].iloc[0]
except IndexError:
dic_bac['中文名'] = 'NA'
try:
dic_bac['分类'] = medical_DB.loc[medical_DB['英文名称'] == compare_bac_name, '分类'].iloc[0]
try:
dic_bac['分类顺序'] = mic_dict[dic_bac['分类']]
except KeyError:
dic_bac['分类顺序'] = 0
except IndexError:
dic_bac['分类'] = 'NA'
dic_bac['分类顺序'] = 0
if dic_bac['分类'] not in ['DNA病毒', 'RNA病毒', '病毒', '真菌', '细菌']:
dic_bac['分类'] = '其他病原'
try:
dic_bac['分类顺序'] = mic_dict[dic_bac['分类']]
except KeyError:
dic_bac['分类顺序'] = 0
try:
dic_bac['相对丰度'] = '%.2f' % float(Interpretation.loc[Interpretation['name'] == compare_bac_name, column_P].iloc[0])
except KeyError:
column_P = info_client.loc[info_client['样本编号'] == sample_code, 'barcode'].iloc[0] + '_P_' + str(info_client.loc[info_client['样本编号'] == sample_code, '患者姓名'].iloc[0]) + '_' + sample_code
dic_bac['相对丰度'] = '%.2f' % float(Interpretation.loc[Interpretation['name'] == compare_bac_name, column_P].iloc[0])
except IndexError:
dic_bac['相对丰度'] = 'NA'
try:
try:
dic_bac['序列数'] = int(Interpretation.loc[Interpretation['name'] == compare_bac_name, column_R].iloc[0].replace('*', ''))
except:
dic_bac['序列数'] = int(Interpretation.loc[Interpretation['name'] == compare_bac_name, column_R].iloc[0])
except KeyError:
try:
column_R = info_client.loc[info_client['样本编号'] == sample_code, 'barcode'].iloc[0] + '_R_' + str(info_client.loc[info_client['样本编号'] == sample_code, '患者姓名'].iloc[0]) + '_' + sample_code
dic_bac['序列数'] = int(Interpretation.loc[Interpretation['name'] == compare_bac_name, column_R].iloc[0].replace('*', ''))
except:
column_R = info_client.loc[info_client['样本编号'] == sample_code, 'barcode'].iloc[0] + '_R_' + str(info_client.loc[info_client['样本编号'] == sample_code, '患者姓名'].iloc[0]) + '_' + sample_code
dic_bac['序列数'] = int(Interpretation.loc[Interpretation['name'] == compare_bac_name, column_R].iloc[0])
except IndexError:
dic_bac['序列数'] = 'NA'
report_name = bac_name.replace("[", "")
dic_bac['微生物'] = report_name.replace("]", "")
try:
dic_bac['备注'] = medical_DB.loc[(medical_DB['英文名称'] == compare_bac_name) & (medical_DB.检测项目.str.contains(project_shorthand(sample_code), regex=True)), '备注'].iloc[0]
except IndexError:
dic_bac['备注'] = 'NA'
try:
bac_list.append(medical_DB.loc[medical_DB['英文名称'] == compare_bac_name, '分类'].iloc[0])
except IndexError:
pass
sample_result_list.append(dic_bac)
if supplementary_results == 1:
return sample_result_list
bac_list = list(set(bac_list))
if 'DNA病毒' in bac_list:
bac_list.append('DNA病毒')
if '病毒' in bac_list or 'RNA病毒' in bac_list:
bac_list.append('RNA病毒')
for non_bac in all_bac:
if non_bac not in bac_list:
dic_bac = {}
dic_bac['分类'] = non_bac
dic_bac['分类顺序'] = mic_dict[non_bac]
dic_bac['相对丰度'] = '--'
dic_bac['序列数'] = '--'
dic_bac['微生物'] = '--'
dic_bac['备注'] = '--'
dic_bac['中文名'] = '--'
sample_result_list.append(dic_bac)
sample_result_list: list = sorted(sample_result_list, key=lambda x: x['分类顺序'])
return sample_result_list
# 分类正式报告结果
def microbial_classification(bacteria_list: list,
medical_DB: pd.DataFrame) -> list:
result1_list = []
result2_list = []
result3_list = []
result4_list = []
result5_list = []
result6_list = []
result7_list = []
for microbial in bacteria_list:
compare_bac_name: str = Nor(microbial)
try:
kingdom = medical_DB.loc[medical_DB['英文名称'] == compare_bac_name, '分类'].iloc[0]
genus = medical_DB.loc[medical_DB['英文名称'] == compare_bac_name, '属'].iloc[0]
except IndexError:
kingdom = 'NA'
genus = 'NA'
if genus == '分枝杆菌属':
result1_list.append(microbial)
elif kingdom == '细菌':
result2_list.append(microbial)
elif kingdom == '真菌':
result3_list.append(microbial)
elif kingdom == 'DNA病毒':
result4_list.append(microbial)
elif kingdom == '病毒' or kingdom == 'RNA病毒':
result5_list.append(microbial)
elif kingdom == '古菌' or kingdom == '其他病原':
result6_list.append(microbial)
elif kingdom == '寄生虫':
result7_list.append(microbial)
else:
logging.info(f"{microbial}没有在数据库中找到,导致报告中未显示!")
return [result1_list, result2_list, result3_list, result4_list, result5_list, result6_list, result7_list]
# 表格信息的生成1
def table_context(sample_code: str,
info_client: pd.DataFrame,
Interpretation: pd.DataFrame,
formal_report: str,
supplementary_report: str,
medical_DB: pd.DataFrame) -> list:
# print(sample_code)
if 'RNA' in info_client.loc[info_client['样本编号'] == sample_code, '检测项目'].iloc[0] and 'DNA' not in info_client.loc[info_client['样本编号'] == sample_code, '检测项目'].iloc[0]:
all_bac: list = ['RNA病毒']
mic_dict: dict = {'RNA病毒': 1}
elif 'RNA' in info_client.loc[info_client['样本编号'] == sample_code, '检测项目'].iloc[0]:
all_bac: list = ['细菌', '真菌', 'DNA病毒', 'RNA病毒', '其他病原']
mic_dict: dict = {'细菌': 1, '真菌': 2, 'DNA病毒': 3, 'RNA病毒': 4, '其他病原': 5}
else:
all_bac: list = ['细菌', '真菌', 'DNA病毒', '其他病原']
mic_dict: dict = {'细菌': 1, '真菌': 2, 'DNA病毒': 3, '其他病原': 4}
bacteria_list: list = []
if formal_report != 'NA':
bacteria_list: list = formal_report.split(',')
# print(bacteria_list)
# bacteria_list = change_bacteria_list(bacteria_list)
supplementary_results = 0
table1_list = []
table1_list = find_info(result_list=bacteria_list, sample_code=sample_code, Interpretation=Interpretation, info_client=info_client, medical_DB=medical_DB, all_bac=all_bac, mic_dict=mic_dict, supplementary_results=supplementary_results)
table2_list = []
if supplementary_report != 'NA':
supplementary_results = 1
bacteria_list: list = supplementary_report.split(',')
# bacteria_list = change_bacteria_list(bacteria_list)
table2_list: list = find_info(result_list=bacteria_list, sample_code=sample_code, Interpretation=Interpretation, info_client=info_client, medical_DB=medical_DB, all_bac=all_bac, mic_dict=mic_dict, supplementary_results=supplementary_results)
else:
table2_list = [{'中文名': '--', '分类': '--', '分类顺序': 1, '相对丰度': '--', '序列数': '--', '微生物': '--', '备注': '--'}]
return [table1_list, table2_list]
# 表格信息的生成2
def table2_context(sample_code: str,
info_client: pd.DataFrame,
Interpretation: pd.DataFrame,
formal_report: str,
supplementary_report: str,
medical_DB: pd.DataFrame) -> list:
# print(sample_code)
all_bac_list: list = [['细菌'], ['细菌'], ['真菌'], ['DNA病毒'], ['RNA病毒'], ['其他病原'], ['寄生虫']]
mic_dict_list: dict = [{'细菌': 1}, {'细菌': 1}, {'真菌': 1}, {'DNA病毒': 1, }, {'RNA病毒': 1}, {'其他病原': 1}, {'寄生虫': 1}]
bacteria_list: list = []
if formal_report != 'NA':
bacteria_list: list = formal_report.split(',')
# print(bacteria_list)
# bacteria_list = change_bacteria_list(bacteria_list)
all_kinds_list = microbial_classification(bacteria_list=bacteria_list, medical_DB=medical_DB)
supplementary_results = 0
table1_list = []
for index, result_list in enumerate(all_kinds_list):
# print(result_list)
table1_list.append(find_info(result_list=result_list, sample_code=sample_code, Interpretation=Interpretation, info_client=info_client, medical_DB=medical_DB, all_bac=all_bac_list[index], mic_dict=mic_dict_list[index], supplementary_results=supplementary_results))
# print(table1_list)
table2_list = []
if supplementary_report != 'NA':
supplementary_results += 1
bacteria_list: list = supplementary_report.split(',')
# bacteria_list = change_bacteria_list(bacteria_list)
table2_list: list = find_info(result_list=bacteria_list, sample_code=sample_code, Interpretation=Interpretation, info_client=info_client, medical_DB=medical_DB, all_bac=all_bac_list[0], mic_dict=mic_dict_list[0], supplementary_results=supplementary_results)
else:
table2_list = [{'中文名': '--', '分类': '--', '分类顺序': 1, '相对丰度': '--', '序列数': '--', '微生物': '--', '备注': '--'}]
return [table1_list, table2_list]
# 表格信息的生成2
def table7_make(sample_code: str,
info_client: pd.DataFrame,
drug_resistance_df: pd.DataFrame
) -> list:
handle_df = info_client[info_client['样本编号'] == sample_code]
pat_name = handle_df['患者姓名'].iloc[0]
drug_resistance_info = info_client[(info_client['患者姓名'] == pat_name) & (info_client['备注'].str.contains('普通耐药'))]
# print(drug_resistance_info)
table_list = []
if drug_resistance_info.shape[0] != 0:
compare_sample_code = drug_resistance_info['样本编号'].iloc[0]
# print(compare_sample_code)
drug_resistance_colname = drug_resistance_info.loc[drug_resistance_info['样本编号'] == compare_sample_code, 'barcode'].iloc[0] + '_' + project_shorthand(compare_sample_code) + '_' + str(drug_resistance_info.loc[drug_resistance_info['样本编号'] == compare_sample_code, '患者姓名'].iloc[0]) + '_' + compare_sample_code + '_num'
# print(drug_resistance_colname)
# print(drug_resistance_df)
try:
drug_resistance_result = drug_resistance_df[drug_resistance_colname]
except KeyError:
drug_resistance_colname = drug_resistance_info.loc[drug_resistance_info['样本编号'] == compare_sample_code, 'barcode'].iloc[0] + '_' + str(drug_resistance_info.loc[drug_resistance_info['样本编号'] == compare_sample_code, '患者姓名'].iloc[0]) + '_' + compare_sample_code + '_num'
drug_resistance_result = drug_resistance_df[drug_resistance_colname]
gene_list = drug_resistance_df['gene'].tolist()
for gene in gene_list:
number = drug_resistance_df.query('gene == @gene').iloc[0, :][drug_resistance_colname]
if int(number) != 0:
dic_bac = {}
dic_bac['基因'] = gene
dic_bac['药物'] = drug_resistance_df.query('gene == @gene').iloc[0, :]['drug']
table_list.append(dic_bac)
if len(table_list) == 0:
dic_bac = {}
dic_bac['基因'] = '--'
dic_bac['药物'] = '--'
table_list.append(dic_bac)
return table_list
# 临床解析的生成
def clinical(sample_code: str,
info_client: pd.DataFrame,
medical_DB: pd.DataFrame,
formal_report: str,
supplementary_report: str,
manufacturer: str):
rt = RichText('')
if manufacturer == 'beagle':
bacteria_list: list = formal_report.split(',')
elif manufacturer == 'seegene' or 'boruilin' or 'beijing':
if supplementary_report != 'NA':
bacteria_list: list = supplementary_report.split(',')
else:
return rt
# bacteria_list = change_bacteria_list(bacteria_list)
# print('bacteria_list',bacteria_list)
dic_number: dict = {1: '一', 2: '二', 3: '三', 4: '四', 5: '五', 6: '六', 7: '七', 8: '八', 9: '九', 10: '十', 11: '十一', 12: '十二', 13: '十三', 14: '十四', 15: '十五', 16: '十六', 17: '十七', 18: '十八', 19: '十九', 20: '二十', 21: '二十一', 22: '二十二', 23: '二十三', 24: '二十四', 25: '二十五', 26: '二十六', 27: '二十七', 28: '二十八', 29: '二十九', 30: '三十'}
drug_indication_value: int = 0
for index, bac_name in enumerate(bacteria_list):
compare_bac_name: str = Nor(bac_name)
try:
new_name = medical_DB.loc[medical_DB['英文名称'] == compare_bac_name, '种'].iloc[0]
if str(medical_DB.loc[medical_DB['英文名称'] == compare_bac_name, '种'].iloc[0]) != 'NA':
chinese_name: str = str(medical_DB.loc[medical_DB['英文名称'] == compare_bac_name, '种'].iloc[0])
else:
chinese_name = ''
rt.add(dic_number[index + 1] + ' ' + chinese_name, bold=True)
rt.add('(', bold=True)
report_name: str = bac_name.replace("[", "")
report_name: str = report_name.replace("]", "")
rt.add(report_name, italic=True, bold=True)
rt.add(')\n', bold=True)
if manufacturer == 'beagle':
try:
if str(medical_DB.loc[(medical_DB['英文名称'] == compare_bac_name) & (medical_DB.检测项目.str.contains(project_shorthand(sample_code), regex=True)), '常用药物'].iloc[0]) != 'NA':
rt.add(' ' + '1 临床意义', bold=True)
rt.add('\n' + ' ' + medical_DB.loc[(medical_DB['英文名称'] == compare_bac_name) & (medical_DB.检测项目.str.contains(project_shorthand(sample_code), regex=True)), '临床意义'].iloc[0])
rt.add('\n' + ' ' + '2 常用药物', bold=True)
rt.add('\n' + ' ' + str(medical_DB.loc[(medical_DB['英文名称'] == compare_bac_name) & (medical_DB.检测项目.str.contains(project_shorthand(sample_code), regex=True)), '常用药物'].iloc[0]) + '\n')
drug_indication_value += 1
elif str(medical_DB.loc[(medical_DB['英文名称'] == compare_bac_name) & (medical_DB.检测项目.str.contains(project_shorthand(sample_code), regex=True)), '临床意义'].iloc[0]) != 'NA':
rt.add(' ' + '临床意义', bold=True)
rt.add('\n' + ' ' + medical_DB.loc[(medical_DB['英文名称'] == compare_bac_name) & (medical_DB.检测项目.str.contains(project_shorthand(sample_code), regex=True)), '临床意义'].iloc[0] + '\n')
except IndexError:
logging.info(f"正式结果中的{bac_name}在数据库中的检测项目信息有问题,影响临床解析的生成")
elif manufacturer == 'seegene' or 'boruilin' or 'beijing':
try:
rt.add(' ' + medical_DB.loc[(medical_DB['英文名称'] == compare_bac_name) & (medical_DB.检测项目.str.contains(project_shorthand(sample_code), regex=True)), '临床意义'].iloc[0] + '\n')
except IndexError:
logging.info(f"正式结果中的{bac_name}在数据库中的检测项目信息有问题,影响临床解析的生成")
except IndexError:
logging.info(f"正式结果中的{bac_name}在数据库中没有找到,影响临床解析的生成")
if drug_indication_value != 0 and manufacturer == 'beagle':
rt.add('\n注:常用药物为临床常规药物,且无法覆盖药敏结果,具体用药请结合临床药敏结果或医院耐药监测数据酌情用药。', bold=True)
return rt
# 参考文献的生成
def reference(sample_code: str,
formal_report: str,
supplementary_report: str):
bacteria_list: list = formal_report.split(',')
dic_number: dict = {1: '一', 2: '二', 3: '三', 4: '四', 5: '五', 6: '六', 7: '七', 8: '八', 9: '九', 10: '十', 11: '十一', 12: '十二', 13: '十三', 14: '十四', 15: '十五', 16: '十六', 17: '十七', 18: '十八', 19: '十九', 20: '二十', 21: '二十一', 22: '二十二', 23: '二十三', 24: '二十四', 25: '二十五', 26: '二十六', 27: '二十七', 28: '二十八', 29: '二十九', 30: '三十'}
index_str: int = len(bacteria_list) + 1
rt = RichText(dic_number[index_str] + '、' + '参考文献\n')
all_reference_list: list = []
reference_list: list = []
for bac_name in bacteria_list:
compare_bac_name: str = Nor(bac_name)
try:
new_reference: str = medical_DB.loc[(medical_DB['英文名称'] == compare_bac_name) & (medical_DB.检测项目.str.contains(project_shorthand(sample_code), regex=True)), '参考文献'].iloc[0]
for literature in new_reference.split("\n"):
all_reference_list.append(literature[2:])
reference_list: list = list(set(all_reference_list))
except IndexError:
pass
for index, val in enumerate(reference_list):
rt.add(str(index + 1) + '.' + str(val) + '\n')
return rt
# seegene报告修改表格
def form_modification(doc,
dic_client: dict,
sample_code: str):
# table = doc.tables[3]
# if len(doc.tables[3].rows) != 2:
table = doc.tables[4]
if len(doc.tables[4].rows) != 2:
add_dict = {'number_1': [], 'number_2': [], 'number_3': [], 'number_4': [], 'number_5': [], 'number_6': [], 'number_7': []}
for line_info in dic_client[sample_code]['表9信息']:
if line_info['分类'] == '细菌':
add_dict['number_2'].append(line_info)
elif line_info['分类'] == '真菌':
add_dict['number_3'].append(line_info)
elif line_info['分类'] == 'DNA病毒':
add_dict['number_4'].append(line_info)
elif line_info['分类'] == '病毒' or line_info['分类'] == 'RNA病毒':
add_dict['number_5'].append(line_info)
elif line_info['分类'] == '古菌' or line_info['分类'] == '其他病原':
add_dict['number_6'].append(line_info)
elif line_info['分类'] == '寄生虫':
add_dict['number_7'].append(line_info)
number = 1
while number < 8:
table_info_name = f'表{number}信息'
table_info = dic_client[sample_code][table_info_name]
change_color_table = doc.tables[4 + number]
if table_info[0]['微生物'] != '--':
for i, line in enumerate(table_info):
row = i + 2
col = len(change_color_table.columns)
for col_number in range(col):
run = change_color_table.cell(row, col_number).paragraphs[0]
content = run.text
run.text = ''
run = run.add_run(content)
run.font.color.rgb = RGBColor(255, 0, 0)
run.font.size = Pt(10)
run.font.name = 'Times New Roman'
run.element.rPr.rFonts.set(qn('w:eastAsia'), '黑体')
if col_number == 1:
run.italic = True
else:
run = change_color_table.cell(2, 1).paragraphs[0]
run.text = ''
run = run.add_run('--')
run.font.color.rgb = RGBColor(0, 0, 0)
run.font.size = Pt(10)
run.font.name = 'Times New Roman'
run.element.rPr.rFonts.set(qn('w:eastAsia'), '黑体')
add_key = f'number_{number}'
table_info.extend(add_dict[add_key])
result_list = []
if len(table_info) != 1 or table_info[0]['微生物'] != '--':
add_number = 0
for input_dict in table_info:
if input_dict['备注'] == '人体共生菌':
add_number += 1
elif input_dict['中文名'] != 'NA' and input_dict['中文名'] != '--':
if input_dict in add_dict[add_key]:
result_list.append(input_dict['中文名'] + '(补充报告部分)')
else:
result_list.append(input_dict['中文名'])
elif input_dict['中文名'] == 'NA' and input_dict['微生物'] != '--':
if input_dict in add_dict[add_key]:
result_list.append(input_dict['微生物'] + '(补充报告部分)')
else:
result_list.append(input_dict['微生物'])
if len(result_list) != 0:
result_info = ",".join(result_list)
run = table.cell(number, 1).paragraphs[0]
run.text = ''
run = run.add_run(result_info)
run.font.color.rgb = RGBColor(255, 0, 0)
run.font.size = Pt(11)
run.font.name = 'Times New Roman'
run.element.rPr.rFonts.set(qn('w:eastAsia'), '黑体')
if add_number != 0:
p = table.cell(number, 1).paragraphs[0]
if p.text != '未检出疑似病原体':
run = p.add_run(',疑似微生态菌群')
else:
p.text = ''
run = p.add_run('疑似微生态菌群')
run.font.color.rgb = RGBColor(255, 0, 0)
run.font.size = Pt(11)
run.font.name = 'Times New Roman'
run.element.rPr.rFonts.set(qn('w:eastAsia'), '黑体')
number += 1
table_info = dic_client[sample_code]['表8信息']
if table_info[0]['基因'] != '--':
for infp_dict in table_info:
result_list.append(infp_dict['基因'])
result_info = ",".join(result_list)
run = table.cell(number, 1).paragraphs[0]
run.text = ''
run = run.add_run(result_info)
run.font.color.rgb = RGBColor(255, 0, 0)
run.font.size = Pt(11)
run.font.name = 'Arial'
run.element.rPr.rFonts.set(qn('w:eastAsia'), '黑体')
run.italic = True
else:
table_info = dic_client[sample_code]['表5信息']
change_color_table = doc.tables[5]
if table_info[0]['微生物'] != '--':
for i, line in enumerate(table_info):
row = i + 2
col = len(change_color_table.columns)
for col_number in range(col):
run = change_color_table.cell(row, col_number).paragraphs[0]
content = run.text
run.text = ''
run = run.add_run(content)
run.font.color.rgb = RGBColor(255, 0, 0)
run.font.size = Pt(10)
run.font.name = 'Times New Roman'
run.element.rPr.rFonts.set(qn('w:eastAsia'), '黑体')
if col_number == 1:
run.italic = True
else:
run = change_color_table.cell(2, 1).paragraphs[0]
run.text = ''
run = run.add_run('--')
run.font.color.rgb = RGBColor(0, 0, 0)
run.font.size = Pt(10)
run.font.name = 'Times New Roman'
result_list = []
if len(table_info) != 1 or table_info[0]['微生物'] != '--':
add_number = 0
for input_dict in table_info:
if input_dict['中文名'] != 'NA' and input_dict['中文名'] != '--':
result_list.append(input_dict['中文名'])
elif input_dict['中文名'] == 'NA' and input_dict['微生物'] != '--':
result_list.append(input_dict['微生物'])
# print(result_list)
if len(result_list) != 0:
result_info = ",".join(result_list)
run = table.cell(1, 1).paragraphs[0]
run.text = ''
run = run.add_run(result_info)
# print(run.text)
run.font.color.rgb = RGBColor(255, 0, 0)
run.font.size = Pt(11)
run.font.name = 'Arial'
run.element.rPr.rFonts.set(qn('w:eastAsia'), '黑体')
def form_modification2(doc,
dic_client: dict,
sample_code: str):
# table = doc.tables[3]
# if len(doc.tables[3].rows) != 2:
table = doc.tables[4]
if len(doc.tables[4].rows) != 2:
add_dict = {'number_1': [], 'number_2': [], 'number_3': [], 'number_4': [], 'number_5': [], 'number_6': []}
for line_info in dic_client[sample_code]['表9信息']:
if line_info['分类'] == '细菌':
add_dict['number_2'].append(line_info)
elif line_info['分类'] == '真菌':
add_dict['number_3'].append(line_info)
elif line_info['分类'] == 'DNA病毒':
add_dict['number_4'].append(line_info)
# elif line_info['分类'] == '病毒' or line_info['分类'] == 'RNA病毒':
# add_dict['number_5'].append(line_info)
elif line_info['分类'] == '古菌' or line_info['分类'] == '其他病原':
add_dict['number_5'].append(line_info)
elif line_info['分类'] == '寄生虫':
add_dict['number_6'].append(line_info)
# print('add_dict',add_dict)
number = 1
while number < 7:
if number < 5:
table_info_name = f'表{number}信息'
# print('table_info_name',table_info_name)
table_info = dic_client[sample_code][table_info_name]
change_color_table = doc.tables[4 + number]
# print('doc.tables[3+number]',3+number)
# print('table_info[0][微生物]',table_info)
if table_info[0]['微生物'] != '--':
for i, line in enumerate(table_info):
# print(i,line)
row = i + 2
col = len(change_color_table.columns)
for col_number in range(col):
run = change_color_table.cell(row, col_number).paragraphs[0]
content = run.text
# print(content)
run.text = ''
run = run.add_run(content)
run.font.color.rgb = RGBColor(255, 0, 0)
run.font.size = Pt(10)
run.font.name = 'Times New Roman'
run.element.rPr.rFonts.set(qn('w:eastAsia'), '黑体')
if col_number == 1:
run.italic = True
else:
run = change_color_table.cell(2, 1).paragraphs[0]
run.text = ''
run = run.add_run('--')
run.font.color.rgb = RGBColor(0, 0, 0)
run.font.size = Pt(10)
run.font.name = 'Times New Roman'
run.element.rPr.rFonts.set(qn('w:eastAsia'), '黑体')
add_key = f'number_{number}'
table_info.extend(add_dict[add_key])
result_list = []
if len(table_info) != 1 or table_info[0]['微生物'] != '--':
add_number = 0
for input_dict in table_info:
if input_dict['备注'] == '人体共生菌':
add_number += 1
elif input_dict['中文名'] != 'NA' and input_dict['中文名'] != '--':
if input_dict in add_dict[add_key]:
result_list.append(input_dict['中文名'] + '(补充报告部分)')
else:
result_list.append(input_dict['中文名'])
elif input_dict['中文名'] == 'NA' and input_dict['微生物'] != '--':
if input_dict in add_dict[add_key]:
result_list.append(input_dict['微生物'] + '(补充报告部分)')
else:
result_list.append(input_dict['微生物'])
if len(result_list) != 0:
result_info = ",".join(result_list)
run = table.cell(number, 1).paragraphs[0]
run.text = ''
run = run.add_run(result_info)
run.font.color.rgb = RGBColor(255, 0, 0)
run.font.size = Pt(11)
run.font.name = 'Times New Roman'
run.element.rPr.rFonts.set(qn('w:eastAsia'), '黑体')
if add_number != 0:
p = table.cell(number, 1).paragraphs[0]
if p.text != '未检出疑似病原体':
run = p.add_run(',疑似微生态菌群')
else:
p.text = ''
run = p.add_run('疑似微生态菌群')
run.font.color.rgb = RGBColor(255, 0, 0)
run.font.size = Pt(11)
run.font.name = 'Times New Roman'
run.element.rPr.rFonts.set(qn('w:eastAsia'), '黑体')
number += 1
elif number == 5:
pass
number += 1
else:
table_info_name = f'表{number}信息'
# print('table_info_name',table_info_name)
table_info = dic_client[sample_code][table_info_name]
change_color_table = doc.tables[3 + number]
# print('doc.tables[3+number]',3+number)
if table_info[0]['微生物'] != '--':
for i, line in enumerate(table_info):
row = i + 2
col = len(change_color_table.columns)
for col_number in range(col):
run = change_color_table.cell(row, col_number).paragraphs[0]
content = run.text
run.text = ''
run = run.add_run(content)
run.font.color.rgb = RGBColor(255, 0, 0)
run.font.size = Pt(10)
run.font.name = 'Times New Roman'
run.element.rPr.rFonts.set(qn('w:eastAsia'), '黑体')
if col_number == 1:
run.italic = True
else:
run = change_color_table.cell(2, 1).paragraphs[0]
run.text = ''
run = run.add_run('--')
run.font.color.rgb = RGBColor(0, 0, 0)
run.font.size = Pt(10)
run.font.name = 'Times New Roman'
run.element.rPr.rFonts.set(qn('w:eastAsia'), '黑体')
add_key = f'number_{number - 1}'
table_info.extend(add_dict[add_key])
result_list = []
if len(table_info) != 1 or table_info[0]['微生物'] != '--':
add_number = 0
for input_dict in table_info:
if input_dict['备注'] == '人体共生菌':
add_number += 1
elif input_dict['中文名'] != 'NA' and input_dict['中文名'] != '--':
if input_dict in add_dict[add_key]:
result_list.append(input_dict['中文名'] + '(补充报告部分)')
else:
result_list.append(input_dict['中文名'])
elif input_dict['中文名'] == 'NA' and input_dict['微生物'] != '--':
if input_dict in add_dict[add_key]:
result_list.append(input_dict['微生物'] + '(补充报告部分)')
else:
result_list.append(input_dict['微生物'])
if len(result_list) != 0:
result_info = ",".join(result_list)
run = table.cell(number - 1, 1).paragraphs[0]
run.text = ''
run = run.add_run(result_info)
run.font.color.rgb = RGBColor(255, 0, 0)
run.font.size = Pt(11)
run.font.name = 'Times New Roman'
run.element.rPr.rFonts.set(qn('w:eastAsia'), '黑体')
if add_number != 0:
p = table.cell(number - 1, 1).paragraphs[0]
if p.text != '未检出疑似病原体':
run = p.add_run(',疑似微生态菌群')
else:
p.text = ''
run = p.add_run('疑似微生态菌群')
run.font.color.rgb = RGBColor(255, 0, 0)
run.font.size = Pt(11)
run.font.name = 'Times New Roman'
run.element.rPr.rFonts.set(qn('w:eastAsia'), '黑体')
number += 1
table_info = dic_client[sample_code]['表8信息']
if table_info[0]['基因'] != '--':
for infp_dict in table_info:
result_list.append(infp_dict['基因'])
result_info = ",".join(result_list)
run = table.cell(number, 1).paragraphs[0]
run.text = ''
run = run.add_run(result_info)
run.font.color.rgb = RGBColor(255, 0, 0)
run.font.size = Pt(11)
run.font.name = 'Arial'
run.element.rPr.rFonts.set(qn('w:eastAsia'), '黑体')
run.italic = True
else:
table_info = dic_client[sample_code]['表4信息']
change_color_table = doc.tables[4]
if table_info[0]['微生物'] != '--':
for i, line in enumerate(table_info):
row = i + 2
col = len(change_color_table.columns)
for col_number in range(col):
run = change_color_table.cell(row, col_number).paragraphs[0]
content = run.text
run.text = ''
run = run.add_run(content)
run.font.color.rgb = RGBColor(255, 0, 0)
run.font.size = Pt(10)
run.font.name = 'Times New Roman'
run.element.rPr.rFonts.set(qn('w:eastAsia'), '黑体')
if col_number == 1:
run.italic = True
else:
run = change_color_table.cell(2, 1).paragraphs[0]
run.text = ''
run = run.add_run('--')
run.font.color.rgb = RGBColor(0, 0, 0)
run.font.size = Pt(10)
run.font.name = 'Times New Roman'
result_list = []
if len(table_info) != 1 or table_info[0]['微生物'] != '--':
add_number = 0
for input_dict in table_info:
if input_dict['中文名'] != 'NA' and input_dict['中文名'] != '--':
result_list.append(input_dict['中文名'])
elif input_dict['中文名'] == 'NA' and input_dict['微生物'] != '--':
result_list.append(input_dict['微生物'])
# print(result_list)
if len(result_list) != 0:
result_info = ",".join(result_list)
run = table.cell(1, 1).paragraphs[0]
run.text = ''
run = run.add_run(result_info)
# print(run.text)
run.font.color.rgb = RGBColor(255, 0, 0)
run.font.size = Pt(11)
run.font.name = 'Arial'
run.element.rPr.rFonts.set(qn('w:eastAsia'), '黑体')
# 检出微生物添加到附录中
def add_micro(df: pd.DataFrame,
chinese_name: str,
genus_name: str,
micro_type: str,
pathogenicity_info: str,
col_numbers: int,
classification: str
) -> pd.DataFrame:
# print('df',df)
appendix_list = df.iloc[:, 1].apply(Nor).tolist()
# print(appendix_list)
# print(Nor(chinese_name))
# print(Nor(genus_name))
if (Nor(chinese_name) in appendix_list) and (Nor(genus_name) in appendix_list):
micro_row = df[df.iloc[:, 1].apply(Nor) == chinese_name].index.tolist()[0]
genus_row = df[df.iloc[:, 1].apply(Nor) == genus_name].index.tolist()[0]
df.loc[micro_row, '结果'] = '检出'
df.loc[genus_row, '结果'] = '检出'
elif (Nor(genus_name) in appendix_list):
genus_row = df[df.iloc[:, 1].apply(Nor) == genus_name].index.tolist()[0]
df1 = df.loc[:genus_row]
df2 = df.loc[(genus_row + 1):]
if col_numbers == 3:
df3 = pd.DataFrame({df.columns.tolist()[0]: [micro_type], df.columns.tolist()[1]: [' ' + chinese_name], df.columns.tolist()[2]: ['检出']})
else:
df3 = pd.DataFrame({df.columns.tolist()[0]: [micro_type], df.columns.tolist()[1]: [' ' + chinese_name], df.columns.tolist()[2]: [pathogenicity_info], df.columns.tolist()[3]: ['检出']})
df = df1.append(df3, ignore_index=True).append(df2, ignore_index=True)
df.loc[genus_row, '结果'] = '检出'
elif '病毒' not in classification:
if col_numbers == 3:
df4 = pd.DataFrame({df.columns.tolist()[0]: [micro_type], df.columns.tolist()[1]: [genus_name], df.columns.tolist()[2]: ['检出']})
df5 = pd.DataFrame({df.columns.tolist()[0]: [micro_type], df.columns.tolist()[1]: [' ' + chinese_name], df.columns.tolist()[2]: ['检出']})
else:
df4 = pd.DataFrame({df.columns.tolist()[0]: [micro_type], df.columns.tolist()[1]: [genus_name], df.columns.tolist()[2]: [pathogenicity_info], df.columns.tolist()[3]: ['检出']})
df5 = pd.DataFrame({df.columns.tolist()[0]: [micro_type], df.columns.tolist()[1]: [' ' + chinese_name], df.columns.tolist()[2]: [pathogenicity_info], df.columns.tolist()[3]: ['检出']})
df = df.append(df4, ignore_index=True).append(df5, ignore_index=True)
if '病毒' in classification:
if (Nor(chinese_name) in appendix_list):
micro_row = df[df.iloc[:, 1].apply(Nor) == chinese_name].index.tolist()[0]
df.loc[micro_row, '结果'] = '检出'
else:
if col_numbers == 3:
df6 = pd.DataFrame({df.columns.tolist()[0]: [micro_type], df.columns.tolist()[1]: [chinese_name], df.columns.tolist()[2]: ['检出']})
else:
df6 = pd.DataFrame({df.columns.tolist()[0]: [micro_type], df.columns.tolist()[1]: [chinese_name], df.columns.tolist()[2]: [pathogenicity_info], df.columns.tolist()[3]: ['检出']})
df = df.append(df6, ignore_index=True)
return df
# 添加表格框线
def Set_cell_border(cell: _Cell, **kwargs):
"""
设置单元格边框函数
使用方法:
Set_cell_border(
cell,
top={"sz": 12, "val": "single", "color": "#FF0000", "space": "0"},
bottom={"sz": 12, "color": "#00FF00", "val": "single"},
start={"sz": 24, "val": "dashed", "shadow": "true"},
end={"sz": 12, "val": "dashed"},
)
传入参数有cell, 即单元格;top指上边框;bottom指下边框;start指左边框;end指右边框。
"sz"指线的粗细程度;"val"指线型,比如单线,虚线等;"color"指颜色,颜色编码可百度;
"space"指间隔,一般不设置,设置的值大于0会导致线错开;"shadow"指边框阴影
"""
tc = cell._tc
tcPr = tc.get_or_add_tcPr()
tcBorders = tcPr.first_child_found_in("w:tcBorders")
if tcBorders is None:
tcBorders = OxmlElement('w:tcBorders')
tcPr.append(tcBorders)
for edge in ('start', 'top', 'end', 'bottom', 'insideH', 'insideV'):
edge_data = kwargs.get(edge)
if edge_data:
tag = 'w:{}'.format(edge)
element = tcBorders.find(qn(tag))
if element is None:
element = OxmlElement(tag)
tcBorders.append(element)
for key in ["sz", "val", "color", "space", "shadow"]:
if key in edge_data:
element.set(qn('w:{}'.format(key)), str(edge_data[key]))
# 将表格添加到特定的字后面
def move_table_after(table, paragraph):
tbl, p = table._tbl, paragraph._p
p.addnext(tbl)
# 定义表格的文字特征
def change_format(table,
row: int,
col: int
):
run = table.cell(row, col).paragraphs[0]
content = run.text
run.text = ''
run = run.add_run(content)
run.font.color.rgb = RGBColor(0, 0, 0)
run.font.size = Pt(9)
run.font.name = 'Arial'
run.element.rPr.rFonts.set(qn('w:eastAsia'), '微软雅黑')
if run.text == '检出':
run.font.color.rgb = RGBColor(255, 0, 0)
run = table.cell(row, col - 1).paragraphs[0]
content = run.text
run.text = ''
run = run.add_run(content)
run.font.color.rgb = RGBColor(255, 0, 0)
run.font.size = Pt(9)
run.font.name = 'Arial'
run.element.rPr.rFonts.set(qn('w:eastAsia'), '微软雅黑')
run = table.cell(row, col - 2).paragraphs[0]
content = run.text
run.text = ''
run = run.add_run(content)
run.font.color.rgb = RGBColor(255, 0, 0)
run.font.size = Pt(9)
run.font.name = 'Arial'
run.element.rPr.rFonts.set(qn('w:eastAsia'), '微软雅黑')
if len(table.columns) != 6:
run = table.cell(row, col - 3).paragraphs[0]
content = run.text
run.text = ''
run = run.add_run(content)
run.font.color.rgb = RGBColor(255, 0, 0)
run.font.size = Pt(9)
run.font.name = 'Arial'
run.element.rPr.rFonts.set(qn('w:eastAsia'), '微软雅黑')
# 将excel中的数据框转化为docx中的表格
def change_type(df: pd.DataFrame,
table,
col_width_dic: dict
):
for col in list(range(len(table.columns))):
for row in list(range(len(table.rows))):
table.cell(row, col).width = col_width_dic[col]
if row == 0:
try:
table.cell(row, col).text = list(df.columns)[col]