-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathanisotropic-xyz-ref_Lauren.c
840 lines (713 loc) · 25.6 KB
/
anisotropic-xyz-ref_Lauren.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
/*
Program: anisotropic-xyz-ref.C
Author: D. Trinkle (slight modification by Anne Marie Tan)
Date: August 14, 2003 (modified August 21, 2015)
Purpose: Calculate the anisotropic elastic solution for a general
dislocation given:
1. dislocation line vector t = |t| (t1, t2, t3)
2. burgers vector b = (b1, b2, b3)
3. dislocation cut vector m = (m1, m2, m3) (normalized)
4. elastic constants Cmn, crystal class c
Fixed to use the correct slip plane definition (important
for edge and mixed dislocations); that is, the slip plane
vector normal is:
n0 = t x b
unless it's zero; then n0 = t x m0. Note: m0 is to be
perpendicular to t and in the plane of n0.
This new version reads in 2 XYZ files, where x=m, y=n, z=t.
The first file is the undislocated geometry, the second file is the
"reference" geometry. The displacement field is evaluated according
to the "reference" geometry and then applied onto the undislocated
geometry, centered at (0,0). R_disloc = R_undisloc + u(R_reference).
Ideally, you would want to run this code multiple times until self-
consistency is achieved. The first time this code is called,
R_reference = R_undisloc. Subsequently, R_reference = R_disloc from
the previous time. This is repeated until the new R_disloc = R_reference.
You need to be VERY CAREFUL to be consistent about
what information you feed this routine--it does next to no
checks on its own, so you can easily get nonsense out.
This code does NOT shift the origin in any way--it puts the
displacement field right at 0,0. It needs a good "makeslab"
type code to construct the undislocated slab first, with the
appropriate center. But this has the advantage that you can
stovepipe multiple anisotropic calls to, e.g., create a pair of
partials.
Param.: <cell> <infile> <undisloc> <reference>
cell: cell file (see below for format)
infile: input file (see below for format)
undisloc: undislocated crystal input XYZ file
reference: input XYZ file to be used as reference for evaluating
the displacement field (undislocated/dislocated crystal)
==== cell ====
a0 # Scale factor for unit cell
a1.x a1.y a1.z # Cartesian coord of unit cell
a2.x a2.y a2.z
a3.x a3.y a3.z
crystal-class <C_11> ... <C_66> # Crystal class and elastic const.
Natoms # Number of atoms in first unit cell
u1.1 u1.2 u1.3 # Atom locations, in direct coord.
...
uN.1 uN.2 uN.3
==== cell ====
==== infile ====
t1 t2 t3 # dislocation line direction (unit cell coord.)
b1 b2 b3 bd # burgers vector (unit cell coord.)/bd
m1 m2 m3 # dislocation cut vector (perp. to t, in slip plane)
==== infile ====
==== undisloc ====
N # standard xyz format
comment # this *should* be the threading length
atomtype x y z
...
==== undisloc ====
==== reference ====
N # standard xyz format
comment # this *should* be the threading length
atomtype x y z
...
==== reference ====
Flags: MEMORY: our setting for step size
VERBOSE: output the displacement fields too
TESTING: output practically everything as we do it.
Algo.: Read in everything, and just go *nuts* a calculatin'.
First, we make sure that m0 is perp. to t and to b, and
normalized. We also construct n0 = t x m0.
We then define the vectors m(theta) and n(theta) as:
m(theta) = m0*cos(theta) + n0*sin(theta)
n(theta) = -m0*sin(theta) + n0*cos(theta)
and the matrices (ab)_ij as
(ab)_ij = sum a_k C_ikjl b_l
kl
We have to do four integrals and store two of them as
functions of theta, namely, the two constant matrices:
1 Pi -1
S_ij = - - Int (nn) (nm) dtheta
Pi 0 ik kj
1 Pi -1
B_ij = ----- Int (mm) - (mn) (nn) (nm) dtheta
4Pi^2 0 ij ik kl lj
(Note: B_ij = B_ji)
and the two matrices as a function of theta:
theta -1
N_ij(theta) = 4Pi Int (nn) dtheta
0 ij
theta -1
L_ij(theta) = Int (nn) (nm) dtheta
0 ik kj
(Note: N_ij = N_ji)
Also, due to the theta periodicity, we only have to evaluate
these from 0..Pi, since
N_ij(theta+Pi) = N_ij(theta) + N_ij(Pi)
and similarly for L_ij.
Also, S_ij = -1/Pi * L_ij(Pi), so we have only three integrals
to do.
*Then*, to turn these all into our displacement using the
equation:
u (|x|, theta) = [-S ln |x| + N B + L S ] b / 2 Pi
i is ik ks ik ks s
Voila! (whew)
We integrate using a stepping scheme based on Simpson's
extended rule; basically, to integrate f(x) from 0 to x,
we calculate f(x) at a grid of points, and if F(N-1) is
the integral to x-h, and f[i] = f(x-ih), then:
F(N) = F(N-1) + h*SUM(i=0..3, int_weight[i]*f[i])
which works very well. To get the first two points, we
actually have to evaluate f at -h and -2h, and then
start with F(0) = 0. It works (go figure).
We do 16384 integration steps (2^14... woohoo!) to make
sure that we have something reasonable :)
Output: If we're verbose, we'll output the theta dependence of u_i, and
also the ln |x| prefactor.
For fun, and profit, we can output the energy prefactor:
E = b_i B_ij b_j : self-energy prefactor per length
The real meat of the code, though, is to actually put these
displacements to work by outputting the XYZ files for a
cylindrical slab material. We do this by adding in the
displacements... not too hard.
*/
// ************************** COMPILIATION OPTIONS ***********************
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <unistd.h>
#include <libgen.h>
#include <iostream>
#include "dcomp.H"
#include "io-short.H"
#include "matrix.H"
#include "elastic.H"
#include "cell.H"
#include "integrate.H"
// This is the permutation matrix; eps[i][j][k] =
// 1: if ijk is an even permutation of (012)
// -1: if ijk is an odd permutation of (012)
// 0: otherwise
const int eps[3][3][3] = {
{{0,0,0}, {0,0,1}, {0,-1,0}},
{{0,0,-1}, {0,0,0}, {1,0,0}},
{{0,1,0}, {-1,0,0}, {0,0,0}}
};
// ****************************** SUBROUTINES ****************************
inline double dot(double a[3], double b[3])
{
return a[0]*b[0] + a[1]*b[1] + a[2]*b[2];
}
void m_theta(double theta, double m[3], double n[3], double mt[3])
{
mt[0] = cos(theta)*m[0] + sin(theta)*n[0];
mt[1] = cos(theta)*m[1] + sin(theta)*n[1];
mt[2] = cos(theta)*m[2] + sin(theta)*n[2];
}
void n_theta(double theta, double m[3], double n[3], double nt[3])
{
nt[0] = -sin(theta)*m[0] + cos(theta)*n[0];
nt[1] = -sin(theta)*m[1] + cos(theta)*n[1];
nt[2] = -sin(theta)*m[2] + cos(theta)*n[2];
}
void a_mult_b (double a[3], double b[3], double Cijkl[9][9],
double ab[9])
{
int i, j, k, l;
for (i=0; i<3; ++i)
for (j=0; j<3; ++j) {
ab[index(i,j)] = 0.;
for (k=0; k<3; ++k)
for (l=0; l<3; ++l)
ab[index(i,j)] += a[k]*Cijkl[index(k,i)][index(j,l)]*b[l];
}
}
void a_mult_a (double a[3], double Cijkl[9][9], double aa[9])
{
int i, j, k, l;
for (i=0; i<3; ++i) {
for (j=0; j<i; ++j)
aa[index(i,j)] = aa[index(j,i)];
for ( ; j<3; ++j) {
aa[index(i,j)] = 0.;
for (k=0; k<3; ++k)
for (l=0; l<3; ++l)
aa[index(i,j)] += a[k]*Cijkl[index(k,i)][index(j,l)]*a[l];
}
}
}
void print_mat (double a[9])
{
int i, j;
for (i=0; i<3; ++i) {
for (j=0; j<3; ++j)
printf(" %10.5lf", a[index(i,j)]);
printf("\n");
}
}
/*================================= main ==================================*/
// Arguments first, then flags, then explanation.
const int NUMARGS = 4;
const char* ARGLIST = "[-hvt] [-s STEPS] cell infile undisloc reference";
const char* ARGEXPL =
" cell: cell file (-h for format)\n\
infile: input file (-h for format)\n\
undisloc: undislocated crystal input XYZ file\n\
reference: reference crystal input XYZ file\n\
\n\
-s STEPS number of integration steps\n\
-v verbosity\n\
-t testing\n\
-h help";
const char* FILEEXPL =
"==== cell ====\n\
a0 # Scale factor for unit cell\n\
a1.x a1.y a1.z # Cartesian coord of unit cell\n\
a2.x a2.y a2.z\n\
a3.x a3.y a3.z\n\
crystal-class <C_11> ... <C_66> # Crystal class and elastic const.\n\
Natoms # Number of atoms in first unit cell\n\
u1.1 u1.2 u1.3 # Atom locations, in direct coord.\n\
...\n\
uN.1 uN.2 uN.3\n\
==== cell ====\n\
\n\
==== infile ====\n\
t1 t2 t3 # dislocation line direction (unit cell coord.)\n\
b1 b2 b3 bd # burgers vector (unit cell coord.)/bd \n\
m1 m2 m3 # dislocation cut vector (perp. to t, in slip plane)\n\
==== infile ====\n\
\n\
==== undisloc ====\n\
N # standard xyz format\n\
comment # this *should* be the threading length\n\
atomtype x y z\n\
...\n\
==== undisloc ====\n\
\n\
==== reference ====\n\
N # standard xyz format\n\
comment # this *should* be the threading length\n\
atomtype x y z\n\
...\n\
==== reference ====\n";
int main ( int argc, char **argv )
{
int i, j, k; // General counting variables.
// ************************** INITIALIZATION ***********************
char* progname = basename(argv[0]);
int VERBOSE = 0; // The infamous verbose flag.
int TESTING = 0; // Extreme verbosity (testing purposes)
int ERROR = 0; // Analysis: Error flag (for analysis purposes)
int Nsteps = 16384; // 2^14, default
char ch;
while ((ch = getopt(argc, argv, "vths:")) != -1) {
switch (ch) {
case 's':
Nsteps = (int)strtol(optarg, (char**)NULL, 10);
break;
case 'v':
VERBOSE = 1;
break;
case 't':
TESTING = 1;
VERBOSE = 1;
break;
case 'h':
case '?':
default:
ERROR = 1;
}
}
argc -= optind; if (argc<NUMARGS && !ERROR) ERROR = 2;
argv += optind;
if (TESTING) {
printf("# Nsteps=%d\n", Nsteps);
}
// We're going to use the number of steps according to our preferred
// amount of memory allocation.
if (Nsteps < 4) {
fprintf(stderr, "Nsteps (%d) must be 4 or larger.\n", Nsteps);
ERROR = 2;
}
// All hell broken loose yet?
if (ERROR != 0) {
fprintf(stderr, "%s %s\n%s\n", progname, ARGLIST, ARGEXPL);
if (ERROR == 1) {
fprintf(stderr, "Input file format:\n%s\n", FILEEXPL);
fprintf(stderr, "Crystal classes:\n%s\n", CRYSTAL_CLASS);
fprintf(stderr, "\nElastic constants ordering:\n");
for (k=0; k<NCLASSES; ++k) {
fprintf(stderr, " Class %2d (%d):", k, class_len[k]);
for (i=0; i<class_len[k]; ++i) {
fprintf(stderr, " C_%2d", class_Cij[k][i]);
}
fprintf(stderr, "\n");
}
}
exit(ERROR);
}
// ****************************** INPUT ****************************
char dump[512];
char *cell_name = argv[0];
char *infile_name = argv[1];
char *undisloc_name = argv[2];
char *reference_name = argv[3];
FILE* infile;
FILE* infile_ref;
double cart[9];
int crystal; // crystal class
double* Cmn_list; // elastic constant input
double Cijkl[9][9];
// disl. line, burgers vect, cut, center of dislocation (all in unit coord)
int tu0[3], bu0[3], mu0[3]; // all in unit cell coord; must be int.
int bu_denom; // denominator for burgers vector (partials)
double t0[3], b0[3], m0[3], n0[3]; // n0 = t0 x m0, in cart. coord.
// First, read in the cell.
infile = myopenr(cell_name);
if (infile == NULL) {
fprintf(stderr, "Couldn't open %s for reading.\n", cell_name);
exit(1);
}
{
int Natoms=NO_ATOMS;
double **u_atoms=NULL;
ERROR = read_cell(infile, cart, crystal, Cmn_list, u_atoms, Natoms);
}
myclose(infile);
if (ERROR != 0) {
if ( has_error(ERROR, ERROR_ZEROVOL) )
fprintf(stderr, "Cell had zero volume.\n");
if ( has_error(ERROR, ERROR_LEFTHANDED) )
fprintf(stderr, "Left-handed cell.\n");
exit(ERROR);
}
if (TESTING)
verbose_output_cell(cart, crystal, Cmn_list, NULL, 0);
// Now, read in the dislocation information
infile = myopenr(infile_name);
if (infile == NULL) {
fprintf(stderr, "Couldn't open %s for reading.\n", infile_name);
exit(1);
}
// **** NOTE: all input in unit cell coord, so first three vect. are int.
// t1 t2 t3 # dislocation line
nextnoncomment(dump, sizeof(dump), infile);
sscanf(dump, "%d %d %d", &tu0[0], &tu0[1], &tu0[2]);
// b1 b2 b3 # burgers vector
nextnoncomment(dump, sizeof(dump), infile);
sscanf(dump, "%d %d %d %d", &bu0[0], &bu0[1], &bu0[2], &bu_denom);
// For backwards compatibility...
if (bu_denom == 0) bu_denom = 1;
// m1 m2 m3 # dislocation cut vector (perp. to t)
nextnoncomment(dump, sizeof(dump), infile);
sscanf(dump, "%d %d %d", &mu0[0], &mu0[1], &mu0[2]);
myclose(infile);
// Now, convert vectors from unit cell to cartesian coord.:
mult_vect(cart, tu0, t0);
mult_vect(cart, bu0, b0); for (i=0; i<3; ++i) b0[i] *= 1./bu_denom;
mult_vect(cart, mu0, m0);
// Sanity check on vectors:
if ( dot(t0, t0) < 1e-8 ) {
fprintf(stderr, "Bad t vector.\n");
ERROR = ERROR_BADFILE;
}
if ( dot(b0, b0) < 1e-8 ) {
fprintf(stderr, "Bad b vector.\n");
ERROR = ERROR_BADFILE;
}
// We also need to project out any t components of m, and place
// it in the slip plane (provided t x b isn't 0):
for (i=0; i<3; ++i)
m0[i] -= dot(m0, t0)/dot(t0,t0) * t0[i];
// Now, calculate n0 (we'll recalc it later, correctly)
for (i=0; i<3; ++i) {
n0[i] = 0.;
for (j=0; j<3; ++j)
for (k=0; k<3; ++k)
n0[i] += eps[i][j][k]*t0[j]*b0[k];
}
if (! dcomp(dot(n0,n0), 0.) )
// We have a non-screw dislocation...
for (i=0; i<3; ++i)
m0[i] -= dot(m0, n0)/dot(n0,n0) * n0[i];
if ( dcomp(dot(m0, m0), 0.) ) {
fprintf(stderr, "Bad m0 vector (parallel to t or out of the t x b slip plane).\n");
ERROR = ERROR_BADFILE;
}
// Now, normalize:
double magn;
magn = 1./sqrt(dot(m0,m0));
for (i=0; i<3; ++i) m0[i] *= magn;
if (VERBOSE) {
printf("# Run dislocation along (%.5lf %.5lf %.5lf)\n",t0[0],t0[1],t0[2]);
printf("# Burgers vector (%.5lf %.5lf %.5lf), magn = %.5lf\n",
b0[0],b0[1],b0[2], sqrt(dot(b0,b0)));
printf("# Cut direction (%.5lf %.5lf %.5lf)\n",m0[0],m0[1],m0[2]);
}
// Calculate elastic constant matrix:
make_Cijkl(crystal, Cmn_list, Cijkl);
// ***************************** ANALYSIS **************************
if (VERBOSE) {
double comp;
comp = fabs(dot(b0,t0)/sqrt(dot(b0,b0)*dot(t0,t0)));
printf("# Screw component: %5.2lf%% Edge component: %5.2lf%%\n",
comp*100.0, (1.-comp)*100.0);
}
// Now, compute n0 = t0 x m0:
for (i=0; i<3; ++i) {
n0[i] = 0;
for (j=0; j<3; ++j)
for (k=0; k<3; ++k)
n0[i] += eps[i][j][k] * t0[j] * m0[k];
}
// Normalize:
magn = 1./sqrt(dot(n0,n0));
for (i=0; i<3; ++i) n0[i] *= magn;
if (TESTING) {
printf("##\n## Normalized vectors:\n");
printf("## Run dislocation along (%.5lf %.5lf %.5lf)\n", t0[0],t0[1],t0[2]);
printf("## Cut direction (%.5lf %.5lf %.5lf)\n", m0[0],m0[1],m0[2]);
printf("## Perp direction (%.5lf %.5lf %.5lf)\n", n0[0],n0[1],n0[2]);
}
if (VERBOSE) {
printf("# %17.12lf %17.12lf %17.12lf : normalized x axis\n", m0[0], m0[1], m0[2]);
printf("# %17.12lf %17.12lf %17.12lf : normalized y axis\n", n0[0], n0[1], n0[2]);
printf("# %17.12lf %17.12lf %17.12lf : normalized z axis\n",
t0[0]/sqrt(dot(t0,t0)), t0[1]/sqrt(dot(t0,t0)), t0[2]/sqrt(dot(t0,t0)));
}
// Now some evaluating of integrals :)
double theta;
double dtheta;
dtheta = M_PI / Nsteps;
double mt[3], nt[3];
double nnt[9], mmt[9], nmt[9], mnt[9], nnti[9];
double detnn;
// We have to integrate three functions.
double **Nint, **Lint;
double Bint[9];
Nint = new double*[Nsteps+1];
Lint = new double*[Nsteps+1];
for (i=0; i<=Nsteps; ++i) {
Nint[i] = new double[9];
Lint[i] = new double[9];
}
// Function evaluations, stored for integration purposes.
double nn_old[4][9], nnnm_old[4][9], mnnnnm_old[4][9];
// First, prime the integration pump:
for (k=1; k<=3; ++k) {
theta = -(k-1)*dtheta;
// Eval (nn), (nm), (mn), (mm), and (nn)^-1
m_theta(theta, m0, n0, mt);
n_theta(theta, m0, n0, nt);
a_mult_a(mt, Cijkl, mmt);
a_mult_a(nt, Cijkl, nnt);
a_mult_b(nt, mt, Cijkl, nmt);
transpose(nmt, mnt);
detnn = 1./inverse(nnt, nnti);
for (i=0; i<9; ++i) nnti[i] *= detnn;
// Now, put into the function evaluations:
for (i=0; i<9; ++i) nn_old[k][i] = nnti[i];
mult(nnti, nmt, nnnm_old[k]);
mult(mnt, nnnm_old[k], mnnnnm_old[k]);
for (i=0; i<9; ++i)
mnnnnm_old[k][i] = mmt[i] - mnnnnm_old[k][i];
// And HERE's where we'd integrate, if we wanted to... :)
}
// Now we've got EVERYTHING, let's integrate!
// theta = 0 is easy...
for (i=0; i<9; ++i) {
Nint[0][i] = 0.;
Lint[0][i] = 0.;
Bint[i] = 0.;
}
for (k=1; k<=Nsteps; ++k) {
theta = k*dtheta;
// Eval (nn), (nm), (mn), (mm), and (nn)^-1
m_theta(theta, m0, n0, mt);
n_theta(theta, m0, n0, nt);
a_mult_a(mt, Cijkl, mmt);
a_mult_a(nt, Cijkl, nnt);
a_mult_b(nt, mt, Cijkl, nmt);
transpose(nmt, mnt);
detnn = 1./inverse(nnt, nnti);
for (i=0; i<9; ++i) nnti[i] *= detnn;
// Now, put into the function evaluations:
for (i=0; i<9; ++i) nn_old[0][i] = nnti[i];
mult(nnti, nmt, nnnm_old[0]);
mult(mnt, nnnm_old[0], mnnnnm_old[0]);
for (i=0; i<9; ++i)
mnnnnm_old[0][i] = mmt[i] - mnnnnm_old[0][i];
// Now, we can integrate!
for (i=0; i<9; ++i) {
Nint[k][i] = Nint[k-1][i];
Lint[k][i] = Lint[k-1][i];
for (j=0; j<4; ++j) {
Nint[k][i] += dtheta*int_weight[j]*nn_old[j][i];
Lint[k][i] += dtheta*int_weight[j]*nnnm_old[j][i];
Bint[i] += dtheta*int_weight[j]*mnnnnm_old[j][i];
}
}
// Now, we slide down all of our "old" values:
for (j=3; j>0; --j)
for (i=0; i<9; ++i) {
nn_old[j][i] = nn_old[j-1][i];
nnnm_old[j][i] = nnnm_old[j-1][i];
mnnnnm_old[j][i] = mnnnnm_old[j-1][i];
}
// And do it all again!
}
// Finally, define S, and scale everything appropriately.
double Sint[9];
for (k=0; k<=Nsteps; ++k)
for (i=0; i<9; ++i)
Nint[k][i] *= (4.*M_PI);
for (i=0; i<9; ++i) {
Sint[i] = -Lint[Nsteps][i] * M_1_PI;
Bint[i] *= 0.25*M_1_PI*M_1_PI;
}
// Displacement!
double** u;
double NB[9], LS[9], sum[9];
u = new double*[Nsteps+1];
for (k=0; k<=Nsteps; ++k) {
u[k] = new double[3];
theta = k*dtheta;
// Eval. the theta part of u_i:
mult(Nint[k], Bint, NB);
mult(Lint[k], Sint, LS);
for (i=0; i<9; ++i) sum[i] = NB[i] + LS[i];
mult_vect(sum, b0, u[k]);
for (i=0; i<3; ++i) u[k][i] *= 0.5*M_1_PI;
}
// Now, let's put those displacements into cylindrical coordinates:
double** u_xyz;
double tmagn;
tmagn = 1./sqrt(dot(t0,t0));
u_xyz = new double*[2*Nsteps+1];
for (k=0; k<=Nsteps; ++k) {
u_xyz[k] = new double[3];
u_xyz[k][0] = dot(u[k], m0);
u_xyz[k][1] = dot(u[k], n0);
u_xyz[k][2] = dot(u[k], t0) * tmagn;
}
for ( ; k<=(2*Nsteps); ++k) {
u_xyz[k] = new double[3];
u_xyz[k][0] = dot(u[k-Nsteps], m0) + u_xyz[Nsteps][0];
u_xyz[k][1] = dot(u[k-Nsteps], n0) + u_xyz[Nsteps][1];
u_xyz[k][2] = dot(u[k-Nsteps], t0) * tmagn + u_xyz[Nsteps][2];
}
// ****************************** OUTPUT ***************************
// Human readable (sorta) first:
if (VERBOSE) {
// Let's give the energy per-length prefactor:
double u0[3];
double tnorm[3];
for (i=0; i<3; ++i) tnorm[i] = t0[i] *tmagn;
mult_vect(Bint, b0, u0);
printf("# Energy per unit length prefector = %.15lf\n", dot(b0, u0));
if (TESTING) {
// First, let's dump out the radial part (ln |x| prefactor):
mult_vect(Sint, b0, u0);
for (i=0; i<3; ++i) u0[i] *= -0.5*M_1_PI;
printf("# radial prefactor: u.t, u.m(0), u.n(0) =\n");
printf("# %.15lf %.15lf %.15lf\n",
dot(u0, tnorm), dot(u0, m0), dot(u0, n0));
printf("# \n");
// Now, let's output it; next, just the angular part.
printf("# theta u.t u.m(theta) u.n(theta)\n");
// 0..Pi
for (k=0; k<=Nsteps; ++k) {
theta = k*dtheta;
// For output in "dislocation coordinates":
m_theta(theta, m0, n0, mt);
n_theta(theta, m0, n0, nt);
printf("%10.7lf %.15lf %.15lf %.15lf\n", theta,
dot(u[k], tnorm), dot(u[k], mt), dot(u[k], nt));
}
// Pi .. 2Pi
// We handle this simply adding in the u0 = u[Nsteps]
for (i=0; i<3; ++i) u0[i] = u[Nsteps][i];
for (k=1; k<=Nsteps; ++k) {
theta = k*dtheta + M_PI;
// For output in "dislocation coordinates":
m_theta(theta, m0, n0, mt);
n_theta(theta, m0, n0, nt);
printf("%10.7lf %.15lf %.15lf %.15lf\n", theta,
dot(u[k], tnorm)+dot(u0,tnorm),
dot(u[k], mt)+dot(u0,mt),
dot(u[k], nt)+dot(u0,nt));
}
}
}
if (ERROR) {
fprintf(stderr, "An error occured, and we're getting out now.\n");
}
else {
// Now, let's treat the logarithmic part:
double u0[3], xyz0[3];
mult_vect(Sint, b0, u0);
for (i=0; i<3; ++i) u0[i] *= -0.5*M_1_PI;
xyz0[0] = dot(u0, m0);
xyz0[1] = dot(u0, n0);
xyz0[2] = dot(u0, t0)*tmagn;
// Our scaling factor:
double aln;
// double a0;
// a0 = exp( log(det(cart)/Natoms) / 3.);
// aln = -log(a0);
aln = - log(det(cart)) / 3.;
// for interpolation purposes:
double inv_dtheta = 1./dtheta;
// Output XYZ files!!
infile = myopenr(undisloc_name);
infile_ref = myopenr(reference_name);
int Nslab;
// Natoms
nextnoncomment(dump, sizeof(dump), infile);
printf(dump);
sscanf(dump, "%d", &Nslab);
nextnoncomment(dump, sizeof(dump), infile_ref); // dummy readline
// comment
nextnoncomment(dump, sizeof(dump), infile);
printf(dump);
nextnoncomment(dump, sizeof(dump), infile_ref); // dummy readline
for (int n=0; n<Nslab; ++n) {
char atomname[512];
double xyz[3];
double xyz_ref[4];
xyz_ref[3] = -100; //default value for first run
// undislocated atom x y z
nextnoncomment(dump, sizeof(dump), infile);
sscanf(dump, "%s %lf %lf %lf", atomname, xyz, xyz+1, xyz+2);
// reference atom x y z
nextnoncomment(dump, sizeof(dump), infile_ref);
sscanf(dump, "%*s %lf %lf %lf %lf", xyz_ref, xyz_ref+1, xyz_ref+2, xyz_ref+3);
// Now, we need to do some analysis on our displacements; first,
// we need to calculate the distance from the dislocation,
// and the magical angle theta for each:
double dist_ref = sqrt(xyz_ref[0]*xyz_ref[0] + xyz_ref[1]*xyz_ref[1]);
ERROR = dcomp(dist_ref, 0.);
double theta_ref = atan2(xyz_ref[1], xyz_ref[0]); // angle based on the geometry from the previous iteration
if (theta_ref < 0.) theta_ref += (2.*M_PI);
// shift the theta so that it's not discontinuous
// if atom went from above the cut plane (in initial geometry) to below (in dislocation geometry)
if (xyz_ref[3] > - 5 && theta_ref - xyz_ref[3] > 4) theta_ref -= 2.0 * M_PI;
// if atom went from below the cut plane (in initial geometry) to above (in dislocation geometry)
else if (xyz_ref[3] > - 5 && theta_ref - xyz_ref[3] < -4) theta_ref += 2.0 * M_PI;
xyz_ref[3] = theta_ref;
double b_helper[3]; //in case theta is < 0 or > 2pi
if (theta_ref > 2.*M_PI){ //add 1 burgers vector, integrate from 0 to (theta-2pi)
theta_ref -= 2.*M_PI;
// b_helper should be the burgers vector in dislocation coord system...right now I hardcoded it assuming it is along the m direction only
//b_helper[0] = sqrt(dot(b0,b0));
//b_helper[1] = 0.0;
//b_helper[2] = 0.0;
b_helper[0] = dot(b0,m0);
b_helper[1] = 0.0;
b_helper[2] = 0.0;
}
else if (theta_ref < 0){ //subtract 1 burgers vector, integrate from 0 to (theta+2pi)
theta_ref += 2.*M_PI;
//b_helper[0] = -1*sqrt(dot(b0,b0));
//b_helper[1] = 0.0;
//b_helper[2] = 0.0;
b_helper[0] = -1*dot(b0,m0);
b_helper[1] = 0.0;
b_helper[2] = 0.0;
}
else //integrate normally
{
b_helper[0] = 0.0;
b_helper[1] = 0.0;
b_helper[2] = 0.0;
}
if (ERROR) {
fprintf(stderr, "You managed to center your dislocation right on an atom... that's not so good.\n");
break;
}
// Let's displace all of the atoms accordingly:
// xyz0*(ln|x| - ln(a0)) + u_xyz(theta)
double lnr = log(dist_ref) + aln;
// Now, linearly interpolate for theta:
double kreal = theta_ref * inv_dtheta;
int k = (int) kreal;
double alpha = kreal - k, beta = 1. - alpha;
for (int d=0; d<3; ++d) {
xyz[d] += xyz0[d]*lnr + beta*u_xyz[k][d] + alpha*u_xyz[k+1][d] + b_helper[d];
}
// output
printf("%s %20.15lf %20.15lf %20.15lf %20.15lf\n", atomname, xyz[0], xyz[1], xyz[2], xyz_ref[3]);
}
myclose(infile);
myclose(infile_ref);
}
// ************************* GARBAGE COLLECTION ********************
for (i=0; i<=(2*Nsteps); ++i)
delete[] u_xyz[i];
delete[] u_xyz;
for (i=0; i<=Nsteps; ++i) {
delete[] Nint[i];
delete[] Lint[i];
delete[] u[i];
}
delete[] u;
delete[] Nint;
delete[] Lint;
delete[] Cmn_list;
return 0;
}