-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp2.py
77 lines (65 loc) · 3.51 KB
/
app2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
# -*- coding: utf-8 -*-
import os
import pickle
import streamlit as st
from streamlit_option_menu import option_menu
# Set page configuration
st.set_page_config(page_title="Health Assistant", layout="wide", page_icon="🧑⚕️")
# Load models
working_dir = os.path.dirname(os.path.abspath(__file__))
diabetes_model = pickle.load(open('diabetes_model.sav', 'rb'))
heart_disease_model = pickle.load(open('heart_model.sav', 'rb'))
# Page Layout
st.markdown("""
<style>
.main { background-color: #F0F2F6; }
.stButton>button { background-color: #4CAF50; color: white; }
.stTabs>div>div { border-bottom: 4px solid #4CAF50; }
</style>
""", unsafe_allow_html=True)
# Tab Navigation
tabs = st.tabs(["Diabetes Prediction", "Heart Disease Prediction", "Parkinson's Prediction", "Breast Cancer Prediction"])
# Diabetes Prediction
with tabs[0]:
st.title('Diabetes Prediction using ML')
col1, col2, col3 = st.columns(3)
Pregnancies = col1.slider('Number of Pregnancies', 0, 20, 0)
Glucose = col2.slider('Glucose Level', 0, 200, 120)
BloodPressure = col3.slider('Blood Pressure value', 0, 200, 80)
SkinThickness = col1.slider('Skin Thickness value', 0, 100, 20)
Insulin = col2.slider('Insulin Level', 0, 900, 30)
BMI = col3.slider('BMI value', 0.0, 70.0, 25.0)
DiabetesPedigreeFunction = col1.slider('Diabetes Pedigree Function value', 0.0, 2.5, 0.5)
Age = col2.slider('Age of the Person', 0, 100, 25)
if st.button('Diabetes Test Result'):
user_input = [Pregnancies, Glucose, BloodPressure, SkinThickness, Insulin, BMI, DiabetesPedigreeFunction, Age]
diab_prediction = diabetes_model.predict([user_input])
diab_diagnosis = 'The person is diabetic' if diab_prediction[0] == 1 else 'The person is not diabetic'
st.success(diab_diagnosis)
# Heart Disease Prediction
with tabs[1]:
st.title('Heart Disease Prediction using ML')
col1, col2, col3 = st.columns(3)
age = col1.slider('Age', 0, 100, 50)
sex = col2.radio('Sex', ['Male', 'Female'])
cp = col3.selectbox('Chest Pain types', ['Type 1', 'Type 2', 'Type 3', 'Type 4'])
trestbps = col1.slider('Resting Blood Pressure', 0, 200, 120)
chol = col2.slider('Serum Cholestoral in mg/dl', 100, 600, 200)
fbs = col3.radio('Fasting Blood Sugar > 120 mg/dl', ['Yes', 'No'])
restecg = col1.radio('Resting Electrocardiographic results', ['Normal', 'Abnormal'])
thalach = col2.slider('Maximum Heart Rate achieved', 50, 220, 150)
exang = col3.radio('Exercise Induced Angina', ['Yes', 'No'])
oldpeak = col1.slider('ST depression induced by exercise', 0.0, 10.0, 1.0)
slope = col2.selectbox('Slope of the peak exercise ST segment', ['Upsloping', 'Flat', 'Downsloping'])
ca = col3.slider('Major vessels colored by flourosopy', 0, 4, 0)
thal = col1.selectbox('Thalassemia', ['Normal', 'Fixed Defect', 'Reversable Defect'])
if st.button('Heart Disease Test Result'):
user_input = [age, 1 if sex == 'Male' else 0, cp, trestbps, chol, 1 if fbs == 'Yes' else 0, restecg, thalach,
1 if exang == 'Yes' else 0, oldpeak, slope, ca, thal]
heart_prediction = heart_disease_model.predict([user_input])
heart_diagnosis = 'The person is having heart disease' if heart_prediction[0] == 1 else 'The person does not have any heart disease'
st.success(heart_diagnosis)
# Breast Cancer Prediction Tab (Dummy for UI Consistency)
with tabs[3]:
st.title("Breast Cancer Prediction coming soon...")
st.write("This feature is under development.")