-
-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathFace_Detection.py
173 lines (154 loc) · 7.12 KB
/
Face_Detection.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
import face_recognition
import cv2
import numpy as np
from Sub_Modules_Detection import *
import secrets
import datetime
import os
import ctypes
import pyttsx3
import random
import pickle
# This is a demo of running face recognition on live video from your webcam. It's a little more complicated than the
# other example, but it includes some basic performance tweaks to make things run a lot faster:
# 1. Process each video frame at 1/4 resolution (though still display it at full resolution)
# 2. Only detect faces in every other frame of video.
# Mean Stuff 2 Say
# PLEASE NOTE: This example requires OpenCV (the `cv2` library) to be installed only to read from your webcam.
# OpenCV is *not* required to use the face_recognition library. It's only required if you want to run this
# specific demo. If you have trouble installing it, try any of the other demos that don't require it instead.
# Get a reference to webcam #0 (the default one)
video_capture = cv2.VideoCapture(0)
# Create arrays of known face encodings and their names
# Encodings go here
known_face_encodings = []
# Face Names go Here
names, path = Get_Files('./Faces')
known_face_names = names
for element in path:
try:
encoding = Encoding(f'./Faces/{element}')
known_face_encodings.append(encoding)
except:
continue
print(known_face_names)
print(known_face_encodings)
def sharpness(img):
img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
lap = cv2.Laplacian(img, cv2.CV_16S)
mean, stddev = cv2.meanStdDev(lap)
return stddev[0,0]
# Initialize some variables
face_locations = []
face_encodings = []
face_names = []
process_this_frame = True
all_unknown_encodings = []
while True:
# Grab a single frame of video
# Just Ignore this Line :) rtsp://admin:[email protected]:554/Streaming/channels/101/
#video_capture.open('')
ret, frame = video_capture.read()
with open('./Camera_Covered_Values.txt', 'r+') as corrupt:
data = corrupt.read()
correct_data = data.split(',')
covered = correct_data[1]
if int(sharpness(frame)) <= float(covered):
ctypes.windll.user32.LockWorkStation()
say('Locked u Bitch, Try Covering ur screen now')
# Resize frame of video to 1/4 size for faster face recognition processing
small_frame = cv2.resize(frame, (0, 0), fx=0.25, fy=0.25)
# Convert the image from BGR color (which OpenCV uses) to RGB color (which face_recognition uses)
rgb_small_frame = small_frame[:, :, ::-1]
# Only process every other frame of video to save time
if process_this_frame:
# Find all the faces and face encodings in the current frame of video
face_locations = face_recognition.face_locations(rgb_small_frame)
face_encodings = face_recognition.face_encodings(rgb_small_frame, face_locations)
face_names = []
for face_encoding in face_encodings:
# See if the face is a match for the known face(s)
matches = face_recognition.compare_faces(known_face_encodings, face_encoding)
name = "Unknown"
# # If a match was found in known_face_encodings, just use the first one.
# if True in matches:
# first_match_index = matches.index(True)
# name = known_face_names[first_match_index]
# Or instead, use the known face with the smallest distance to the new face
face_distances = face_recognition.face_distance(known_face_encodings, face_encoding)
best_match_index = np.argmin(face_distances)
if matches[best_match_index]:
name = known_face_names[best_match_index]
face_names.append(name)
process_this_frame = not process_this_frame
# Display the results
for (top, right, bottom, left), name in zip(face_locations, face_names):
# Scale back up face locations since the frame we detected in was scaled to 1/4 size
top *= 4
right *= 4
bottom *= 4
left *= 4
if 'Unknown' in face_names:
print('Unknown User Detected')
password = secrets.token_urlsafe(32)
cv2.imwrite(f'./Unknown_Access/Faces/unknown_person{password}.jpg', frame)
try:
# Making a face_encoding of the unknown_person in view of the camera
encoding_unknown = Encoding(f'./Unknown_Access/Faces/unknown_person{password}.jpg')
all_unknown_encodings.append(encoding_unknown)
# Adding Encodings to the Simple .txt File
f = open('./Unknown_Access/Face_Encodings.txt', 'a')
f.write(f'{encoding_unknown} sep {password} sep [Type Name Here] \n')
f.close()
except:
print("Failed to Encode - ;)")
f = open('./Unknown_Access/Face_Encodings.txt', 'r')
data = f.read().split('\n')
f.close()
# Adding Encoding() to the pickle file for further re-processing. Make sure this Folder is not Tampered with Especially this File
# Could be Tampered with to exec() malicious code in the memory. See: https://intoli.com/blog/dangerous-pickles/
f = open('dataset_faces.dat', 'a+')
f.close()
with open('dataset_faces.dat', 'ab') as f:
pickle.dump(all_unknown_encodings, f)
else:
f = open('User_Access_Log_Name.txt', 'a+')
for element in face_names:
f.write(f'{element} - {datetime.datetime.now()}\n')
f.close()
f = open('User_Access_Log_Time.txt', 'a+')
f.write(f'{datetime.datetime.now()}\n')
f.close()
f = open('Banned_People.txt', 'r+')
data = f.read()
data = data.split('\n')
print(data)
f.close()
for element_banned in data:
for element_names in face_names:
if element_names in element_banned:
user32 = ctypes.windll.User32
if is_locked() == True:
print(face_names)
if face_names == []:
print("No Faces in the image ;)")
else:
stuff = mean_stuff_2_say()
say(stuff)
else:
say(f"Computer is gonna be locked, You are not Verified, You are Banned {element_names} .....")
ctypes.windll.user32.LockWorkStation()
# Draw a box around the face
cv2.rectangle(frame, (left, top), (right, bottom), (0, 0, 255), 2)
# Draw a label with a name below the face
cv2.rectangle(frame, (left, bottom - 35), (right, bottom), (0, 0, 255), cv2.FILLED)
font = cv2.FONT_HERSHEY_DUPLEX
cv2.putText(frame, name, (left + 6, bottom - 6), font, 1.0, (255, 255, 255), 1)
# Display the resulting image
cv2.imshow('Face Detection Algorithm (C) 2020 Muneeb Ahmad - {PK-TR}', frame)
# Hit 'q' on the keyboard to quit! -- Remove this Line 2 make it impossible to quit ;)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
# Release handle to the webcam
video_capture.release()
cv2.destroyAllWindows()