Install uv: "An extremely fast Python package manager".
curl -LsSf https://astral.sh/uv/install.sh | sh
cd ~/cdi-hub/tutorials/automatic-medical-image-reporting
uv venv --python 3.12 # Create a virtual environment at .venv.
source .venv/bin/activate #To activate the virtual environment:
deactivate
uv pip install --editable ".[test, learning]" # Install the package in editable mode with test and learning dependencies
uv pip install ."[learning]" # Install learning dependencies
uv pip uninstall ammir
uv pip install -e ".[test,learning]"
Click to see references
- [RATCHET-2021],
- [BioBERT-2020]
- Train and evaluate Medical Transformer for Chest X-ray Diagnosis and Reporting [7-9].
- Implement evaluation tools for image captioning, including BLEU, ROUGE-L, CIDEr, METEOR, SPICE scores [10].
- Developoing a python-based interface using either Streamlit for a web-based solution or a simple command-line interface with Click or another suitable tool.
-
Guo, Li, Anas M. Tahir, Dong Zhang, Z. Jane Wang, and Rabab K. Ward. "Automatic Medical Report Generation: Methods and Applications." APSIPA Transactions on Signal and Information Processing 13, no. 1 (2024). DOI arxiv
-
Hou, Benjamin, Georgios Kaissis, Ronald M. Summers, and Bernhard Kainz. "Ratchet: Medical transformer for chest x-ray diagnosis and reporting." In Medical Image Computing and Computer Assisted Intervention–MICCAI 2021: 24th International Conference, Strasbourg, France, September 27–October 1, 2021, Proceedings, Part VII 24, pp. 293-303. Springer International Publishing, 2021. arxiv google-citations
-
Ramesh, Vignav, Nathan A. Chi, and Pranav Rajpurkar. "Improving radiology report generation systems by removing hallucinated references to non-existent priors." In Machine Learning for Health, pp. 456-473. PMLR, 2022. arxiv github-repo google-scholar
4.1. https://github.com/filipepcampos/mimic-cxr-jpg-loader
4.2. "Training a Convolutional Neural Network to Classify Chest X-rays" https://github.com/MIT-LCP/2019-hst-953/blob/master/tutorials/mimic-cxr/mimic-cxr-train.ipynb
4.3. "Predict plueral effusion in chest x-rays using the MIMIC-CXR-JPG dataset" https://github.com/dalton-macs/pleural-effusion-cnn/tree/main/data
5.1 https://mimic.mit.edu/docs/iv/modules/cxr/
6.1 https://www.kaggle.com/datasets/raddar/chest-xrays-indiana-university/code