forked from siyan-zhao/prepacking
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathprocessor.py
91 lines (74 loc) · 3.73 KB
/
processor.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
from torch.nn.utils.rnn import pad_sequence
import torch.nn.functional as F
import torch
from utils import greedy_packing
class PrePackProcessor:
def __init__(self, tokenizer, packing_fn=None):
self.tokenizer = tokenizer
self.pad_token = tokenizer.convert_tokens_to_ids(tokenizer.pad_token)
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
if packing_fn:
self.packing_fn = packing_fn
else:
self.packing_fn = greedy_packing
def process(self, length_dict, packing_dict, token_dict):
'''
Takes batch of tokens and packs them according to the bin-packing algorithm.
Args:
length_dict (dict): maps original batch index to its prompt length
packing_dict (dict): a mapping between prompt length and bin index
token_dict (dict): maps original batch index to its tokenized prompt
Returns:
new_tokens (Tensor): packed sequence of tokens
new_positions (Tensor): restart positions for the new_tokens
new_mask (Tensor): independent mask for the new_tokens
restart_dict (dict): mapping restart index and original batch index
'''
new_positions = []
new_tokens = []
restart_dict = {0: -1} # -1 is a placeholder
restart_index = 0
for key in packing_dict:
new_tokens += token_dict[key][:-1] # omit final token for generation
restart_index += length_dict[key] - 1
new_positions += list(range(length_dict[key] - 1))
restart_dict[restart_index] = key
restart_indices = list(restart_dict.keys())
size = len(new_tokens)
new_mask = torch.zeros(size, size, device=self.device)
for i in range(len(restart_indices) - 1):
start = restart_indices[i]
end = restart_indices[i + 1]
new_mask[start:end, start:end] = torch.tril(torch.ones((end - start, end - start)))
new_tokens = torch.tensor(new_tokens, device=self.device)
new_positions = torch.tensor(new_positions, device=self.device)
new_mask = new_mask.clone().detach()
return new_tokens, new_positions, new_mask, restart_dict
def batch_process(self, sentences):
original_ids = self.tokenizer(sentences).input_ids
token_dict = dict(enumerate(original_ids))
length_dict = [len(toks) for toks in original_ids]
length_dict = {index: len(toks) for index, toks in enumerate(original_ids)}
max_bin_size = max(length_dict.values())
packing_lst = self.packing_fn(length_dict, max_bin_size)
batch_new_tokens = []
batch_new_positions = []
batch_new_mask = []
batch_restart_indices = []
for packing_dict in packing_lst:
new_tokens, new_positions, new_mask, restart_indices = self.process(
length_dict, packing_dict, token_dict
)
batch_new_tokens.append(new_tokens)
batch_new_positions.append(new_positions)
batch_new_mask.append(new_mask)
batch_restart_indices.append(restart_indices)
batch_new_tokens = pad_sequence(batch_new_tokens, batch_first=True, padding_value=self.pad_token)
batch_new_positions = pad_sequence(batch_new_positions, batch_first=True, padding_value=1)
max_size = max(tensor.shape[1:] for tensor in batch_new_mask)[0]
padded_masks = [
F.pad(tensor, (0, max_size - tensor.size(0), 0, max_size - tensor.size(1)))
for tensor in batch_new_mask
]
batch_new_mask = torch.stack(padded_masks)
return batch_new_tokens, batch_new_positions, batch_new_mask, batch_restart_indices, original_ids