-
Notifications
You must be signed in to change notification settings - Fork 13
/
make-bude-input.cpp
263 lines (214 loc) · 9.73 KB
/
make-bude-input.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
#include "make-bude-input.h"
#include <iostream>
#include <functional>
#include <numeric>
#include <iterator>
#include <unordered_set>
#include <random>
#include <cmath>
std::string &bude::utils::ltrim(std::string &str) {
if (str.empty()) return str;
str.erase(str.begin(), std::find_if(str.begin(), str.end(), [](char ch) {
return !std::isspace<char>(ch, std::locale::classic());
}));
return str;
}
std::string &bude::utils::rtrim(std::string &str) {
if (str.empty()) return str;
str.erase(std::find_if(str.rbegin(), str.rend(), [](char ch) {
return !std::isspace<char>(ch, std::locale::classic());
}).base(), str.end());
return str;
}
std::string bude::utils::trim(const std::string &str) {
auto s = str;
return ltrim(rtrim(s));
}
std::vector<std::string> bude::utils::splitWs(const std::string &s) {
std::istringstream iss(s);
return std::vector<std::string>(std::istream_iterator<std::string>(iss), {});
}
namespace fs = std::filesystem;
typedef std::pair<size_t, std::string> BudeLine;
// read in file and return vector of trimmed lines without any bude comments
static std::vector<BudeLine> readBudeLines(const fs::path &path, const bool log) {
if (log) std::cout << "Reading " << path << "...";
std::ifstream in(path);
std::vector<BudeLine> xs;
std::string line;
size_t lineNum = 0;
while (std::getline(in, line)) {
lineNum++;
auto trimmed = bude::utils::trim(line);
if (trimmed.empty()) continue;
if (trimmed[0] == '#' || trimmed[0] == '%') continue;
xs.emplace_back(lineNum, trimmed);
}
if (log) std::cout << " " << lineNum << " lines (" << (lineNum - xs.size()) << " line(s) of comments/header)" << std::endl;
return xs;
}
// splits a line by whitespace and then formats any exceptions caused by the parsing function passed in
static void parseBudeColumn(const fs::path &path, const std::vector<BudeLine> &lines, size_t i,
const std::function<void(std::vector<std::string>)> &f) {
auto[lineNum, line] = lines[i];
try { f(bude::utils::splitWs(line)); }
catch (const std::exception &e) {
throw std::runtime_error("Parse error at " + path.string() + ":" + std::to_string(lineNum) + ": " + e.what() + "(Source line: `" + line + "`)");
}
}
// read a bhff forcefield file
bude::BudeForceField bude::readForceField(const fs::path &bhff, const bool log) {
auto lines = readBudeLines(bhff, log);
std::map<std::string, std::vector<bude::FFEntry>> data;
// parse a atom line (i.e `C.3 - 1.4200 -0.4736 38.0000 5.5000 1.0000 1.0000 0.0000`)
auto parseBalls = [&](std::string residueId, size_t b) {
parseBudeColumn(bhff, lines, b, [&](auto ballCols) {
if (ballCols.size() != 9)
throw std::runtime_error("ball row requires 9 columns, got `" + std::to_string(ballCols.size()) + "`");
if (ballCols[1].size() != 1)
throw std::runtime_error("column 2 should be a single character column, got `" + ballCols[1] + "`");
auto electType = static_cast<int32_t>(ballCols[1][0]);
auto atomType = ballCols[0];
auto radius = std::stof(ballCols[2]);
auto hphb = std::stof(ballCols[3]);
auto scaling = std::stof(ballCols[7]);
auto elsc = std::stof(ballCols[8]);
data[residueId].push_back(bude::FFEntry{
data[residueId].size(),
residueId,
atomType,
bude::FFParams{
electType,
radius * scaling, // apply radius scaling as per the original script
hphb,
elsc
}
});
});
};
// parse a residue line (i.e `WLD 34`)
auto parseResidue = [&](size_t r) {
parseBudeColumn(bhff, lines, r, [&](auto residueCols) {
if (residueCols.size() == 2) {
auto residueId = residueCols[0];
auto count = std::stoul(residueCols[1]);
// for each residue, we parse atoms below it
for (size_t b = 0; b < count; ++b) parseBalls(residueId, r + 1 + b);
}
});
};
for (size_t r = 0; r < lines.size(); r++) parseResidue(r);
return data;
}
bude::BudeMol2 bude::readMol2(const fs::path &mol2, const std::map<std::string, std::vector<bude::FFEntry>> &forcefield, const bool log) {
// atoms are enclosed between @<TRIPOS>ATOM and @<TRIPOS>
const std::string BeginAtomMarker = "@<TRIPOS>ATOM";
const std::string EndAtomMarker = "@<TRIPOS>";
auto lines = readBudeLines(mol2, log);
// get the slice of lines between the atom markers
auto beginAtom = std::find_if(lines.begin(), lines.end(), [&](const auto &p) { return p.second == BeginAtomMarker; }) + 1;
if (beginAtom == lines.end()) throw std::runtime_error("Begin atom marker(`" + BeginAtomMarker + "`) missing");
auto endAtom = std::find_if(beginAtom, lines.end(), [&](const auto &p) { return p.second.find(EndAtomMarker) == 0; });
if (endAtom == lines.end()) throw std::runtime_error("End atom marker(`" + EndAtomMarker + "`) missing");
// switch to atom type mode when forcefield contains only one residue
auto byAtomType = forcefield.size() == 1;
std::vector<bude::Atom> atoms;
// parse the atoms
auto parseAtom = [&](size_t i) {
parseBudeColumn(mol2, lines, i, [&](const auto &cols) {
if (byAtomType && cols.size() != 9)
throw std::runtime_error("forcefield contains only 1 group but " + mol2.string() + " doesn't have 9 columns");
if (!byAtomType && cols.size() != 10)
throw std::runtime_error("forcefield contains > 1 group but " + mol2.string() + " doesn't have 10 columns");
// skip hydrogen atoms
if (cols[5] != "H" && cols[5] != "h") {
auto atomType = byAtomType ? cols[5] : cols[1];
auto residueId = (byAtomType ? forcefield.begin()->first : cols[7]).substr(0, 3);
auto x = std::stof(cols[2]);
auto y = std::stof(cols[3]);
auto z = std::stof(cols[4]);
if (forcefield.count(residueId) < 1)
throw std::runtime_error("Cannot match key " + residueId + "." + atomType + " in forcefield.");
// cross reference atom index in forcefield
auto residueGroup = forcefield.at(residueId);
auto entry = std::find_if(residueGroup.begin(), residueGroup.end(), [&](const auto &a) { return a.atomType == atomType; });
if (entry == residueGroup.end())
throw std::runtime_error("Cannot match key " + residueId + "." + atomType + " in forcefield.");
atoms.push_back(bude::Atom{
x, y, z,
static_cast<int32_t>(entry->index)
});
}
});
};
std::vector<std::vector<bude::Atom>> conformations;
// parse the conformations
auto parseConformation = [&](size_t i) {
parseBudeColumn(mol2, lines, i, [&](const auto &confCols) {
if (confCols.size() == 2 && confCols[0] == "@<BUDE>CONF") {
std::vector<bude::Atom> conformation;
for (size_t a = 0; a < atoms.size(); ++a)
parseBudeColumn(mol2, lines, a + 1 + i, [&](const auto &confCols) {
if (confCols.size() != 3)
throw std::runtime_error("Conformation requires 3 columns, got " + std::to_string(confCols.size()));
auto x = std::stof(confCols[0]);
auto y = std::stof(confCols[1]);
auto z = std::stof(confCols[2]);
conformation.push_back(bude::Atom{x, y, z, atoms[a].type});
});
conformations.push_back(conformation);
}
});
};
for (auto it = beginAtom; it != endAtom; ++it) parseAtom(std::distance(lines.begin(), it));
for (auto it = endAtom; it != lines.end(); ++it) parseConformation(std::distance(lines.begin(), it));
return std::make_pair(atoms, conformations);
}
bude::Pose<std::vector<float>> bude::generatePoses(
size_t poseSize,
size_t poseSeed,
const bude::Pose<std::vector<float>> &poseRanges, const bool log) {
auto poseRangeFields = poseRanges.fields();
auto maxPoseCombinations = std::transform_reduce(poseRangeFields.begin(), poseRangeFields.end(), 1ul,
std::multiplies<>(), [](const auto &xs) { return xs.size(); });
if (maxPoseCombinations < poseSize)
throw std::invalid_argument("poseSize exceeds maximum possible pose combinations of " + std::to_string(maxPoseCombinations));
typedef std::tuple<size_t, size_t, size_t, size_t, size_t, size_t> PoseParam;
auto hash = [](const PoseParam &p) -> size_t {
return std::get<0>(p) * 100000 + std::get<1>(p) * 10000 + std::get<2>(p) * 1000 +
std::get<3>(p) * 100 + std::get<4>(p) * 10 + std::get<5>(p);
};
auto equal = [](const PoseParam &l, const PoseParam &r) -> bool { return l == r; };
// store poses in a set so we don't get duplicates
std::unordered_set<PoseParam, decltype(hash), decltype(equal)> xs(poseSize, hash, equal);
std::mt19937 gen(poseSeed);
// create randomly distributed indices for each field
std::uniform_int_distribution<size_t> tDegDist(0, poseRanges.tilt.size() - 1);
std::uniform_int_distribution<size_t> rDegDist(0, poseRanges.roll.size() - 1);
std::uniform_int_distribution<size_t> pDegDist(0, poseRanges.pan.size() - 1);
std::uniform_int_distribution<size_t> xTransDist(0, poseRanges.xTrans.size() - 1);
std::uniform_int_distribution<size_t> yTransDist(0, poseRanges.yTrans.size() - 1);
std::uniform_int_distribution<size_t> zTransDist(0, poseRanges.zTrans.size() - 1);
int generated = 0;
while (xs.size() < poseSize) {
xs.emplace(tDegDist(gen), rDegDist(gen), pDegDist(gen),
xTransDist(gen), yTransDist(gen), zTransDist(gen));
generated++;
}
bude::Pose<std::vector<float>> transposedPoses;
constexpr double DEG_TO_RAD = M_PI / 180.0;
std::for_each(xs.begin(), xs.end(), [&](const auto ¶m) {
auto &[t, r, p, x, y, z] = param;
transposedPoses.tilt.push_back(poseRanges.tilt[t] * DEG_TO_RAD);
transposedPoses.roll.push_back(poseRanges.roll[r] * DEG_TO_RAD);
transposedPoses.pan.push_back(poseRanges.pan[p] * DEG_TO_RAD);
transposedPoses.xTrans.push_back(poseRanges.xTrans[x]);
transposedPoses.yTrans.push_back(poseRanges.yTrans[y]);
transposedPoses.zTrans.push_back(poseRanges.zTrans[z]);
});
if (log) {
std::cout << "Generated " << generated << " poses with "
<< generated - xs.size() << " duplicates (removed)" << std::endl;
}
return transposedPoses;
}