diff --git a/inst/include/epiworld/math/lfmcmc/lfmcmc-meat-print.hpp b/inst/include/epiworld/math/lfmcmc/lfmcmc-meat-print.hpp index 1bd5879..b2860a0 100755 --- a/inst/include/epiworld/math/lfmcmc/lfmcmc-meat-print.hpp +++ b/inst/include/epiworld/math/lfmcmc/lfmcmc-meat-print.hpp @@ -5,15 +5,18 @@ template inline void LFMCMC::print(size_t burnin) const { + // For each statistic or parameter in the model, we print three values: + // - mean, the 2.5% quantile, and the 97.5% quantile std::vector< epiworld_double > summ_params(n_parameters * 3, 0.0); std::vector< epiworld_double > summ_stats(n_statistics * 3, 0.0); + // Compute the number of samples to use based on burnin rate size_t n_samples_print = n_samples; if (burnin > 0) { if (burnin >= n_samples) throw std::length_error( - "The burnin is greater than the number of samples." + "The burnin is greater than or equal to the number of samples." ); n_samples_print = n_samples - burnin; @@ -24,6 +27,7 @@ inline void LFMCMC::print(size_t burnin) const n_samples_print ); + // Compute parameter summary values for (size_t k = 0u; k < n_parameters; ++k) { @@ -31,8 +35,8 @@ inline void LFMCMC::print(size_t burnin) const std::vector< epiworld_double > par_i(n_samples_print); for (size_t i = burnin; i < n_samples; ++i) { - par_i[i] = accepted_params[i * n_parameters + k]; - summ_params[k * 3] += par_i[i]/n_samples_dbl; + par_i[i-burnin] = accepted_params[i * n_parameters + k]; + summ_params[k * 3] += par_i[i-burnin]/n_samples_dbl; } // Computing the 95% Credible interval @@ -45,6 +49,7 @@ inline void LFMCMC::print(size_t burnin) const } + // Compute statistics summary values for (size_t k = 0u; k < n_statistics; ++k) { @@ -52,13 +57,12 @@ inline void LFMCMC::print(size_t burnin) const std::vector< epiworld_double > stat_k(n_samples_print); for (size_t i = burnin; i < n_samples; ++i) { - stat_k[i] = accepted_stats[i * n_statistics + k]; - summ_stats[k * 3] += stat_k[i]/n_samples_dbl; + stat_k[i-burnin] = accepted_stats[i * n_statistics + k]; + summ_stats[k * 3] += stat_k[i-burnin]/n_samples_dbl; } // Computing the 95% Credible interval std::sort(stat_k.begin(), stat_k.end()); - summ_stats[k * 3 + 1u] = stat_k[std::floor(.025 * n_samples_dbl)]; summ_stats[k * 3 + 2u] =