-
Notifications
You must be signed in to change notification settings - Fork 65
/
wisetools.py
662 lines (543 loc) · 19 KB
/
wisetools.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
# Copyright (C) 2016 VU University Medical Center Amsterdam
# Author: Roy Straver (github.com/rstraver)
#
# This file is part of WISECONDOR
# WISECONDOR is distributed under the following license:
# Attribution-NonCommercial-ShareAlike, CC BY-NC-SA (https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode)
# This license is governed by Dutch law and this license is subject to the exclusive jurisdiction of the courts of the Netherlands.
import matplotlib
matplotlib.use('agg')
import matplotlib.pyplot as plt
from pylab import get_cmap
import numpy as np
import time
import bisect
from sklearn.decomposition import PCA
from sklearn.utils.extmath import fast_dot
import pysam
from triarray import *
import subprocess
import getpass
import datetime
import socket
# Get rid of some useless warnings, I know there are emtpy slices
import warnings
warnings.filterwarnings('ignore', 'Mean of empty slice')
warnings.filterwarnings('ignore', 'Degrees of freedom <= 0 for slice')
curTime = datetime.datetime.now()
np.seterr('ignore')
np_sum = np.sum
np_pow = np.power
np_max = np.argmax
np_mean = np.mean
np_median = np.median
np_std = np.std
np_abs = np.abs
np_sqrt = np.sqrt
find_pos = bisect.bisect
def getRuntime():
runtime = dict()
runtime['version']=getVersion()
runtime['datetime']=curTime
runtime['hostname']=socket.gethostname()
runtime['username']=getpass.getuser()
return runtime
def getVersion():
version = 'unknown'
try:
version = subprocess.check_output(["git", "describe", "--always"]).split()[0]
except:
pass
return version
def printArgs(args):
argdict=vars(args)
print 'tool =', str(argdict['func']).split()[1][4:]
for arg in sorted(argdict.keys()):
if arg != 'func':
print arg,'=',argdict[arg]
def loadCytoBands(cytoFile):
cytoDict = dict()
curChrom = None
curCyto = None
with open(cytoFile, 'r') as cytoData:
for line in cytoData:
splitLine = line.split()
if splitLine[0][3:] != curChrom:
if curChrom != None:
cytoDict[curChrom] = curCyto
curCyto = []
curChrom = splitLine[0][3:]
curCyto.append(splitLine[1:])
return cytoDict
def trainPCA(refData,pcacomp=3):
tData = refData.T
pca = PCA(n_components=pcacomp)
pca.fit(tData)
PCA(copy=True, whiten=False)
transformed = pca.transform(tData)
inversed = pca.inverse_transform(transformed)
corrected = tData / inversed
#print pca.n_components_
#print pca.explained_variance_
#print pca.explained_variance_ratio_
return corrected.T, pca
def applyPCA(sampleData, mean, components):
pca = PCA(n_components=components.shape[0])
pca.components_ = components
pca.mean_ = mean
transform = pca.transform(np.array([sampleData]))
reconstructed = fast_dot(transform, pca.components_) + pca.mean_
reconstructed = reconstructed[0]
return sampleData / reconstructed
def convertBam(bamfile, binsize=1000000, minShift=4, threshold=4, mapq=1, demandPair=False):
# Prepare the list of chromosomes
chromosomes = dict()
for chromosome in range(1, 23):
chromosomes[str(chromosome)] = None
chromosomes['X'] = None
chromosomes['Y'] = None
# Flush the current stack of reads
def flush(readBuff, counts):
stairSize = len(readBuff)
if stairSize <= threshold or threshold < 0:
for read in readBuff:
location = read.pos / binsize
counts[int(location)] += 1
#if location >= len(counts):
# print read
sam_file = pysam.AlignmentFile(bamfile, "rb")
reads_seen = 0
reads_kept = 0
reads_mapq = 0
reads_rmdup = 0
reads_pairf = 0
larp = -1 # LAst Read Position...
larp2 = -1
for index,chrom in enumerate(sam_file.references):
chromName = chrom
if chromName[:3].lower() == 'chr':
chromName = chromName[3:]
if chromName not in chromosomes:
continue
print chrom,'length:', sam_file.lengths[index], 'bins:', int(sam_file.lengths[index] / float(binsize) + 1)
counts = np.zeros(int(sam_file.lengths[index] / float(binsize) + 1), dtype=np.int32)
readBuff = []
sam_iter = sam_file.fetch(chrom)
prevRead = sam_iter.next()
# Split paths here, for-loop was heavily slowed down by if-statements otherwise
if demandPair:
for read in sam_iter:
if ((int(read.pos) - int(prevRead.pos)) > minShift):
flush(readBuff, counts)
readBuff = []
# Normal ndups will be appended here
if not (read.is_proper_pair and read.is_read1):
reads_pairf += 1
continue
if larp == read.pos and larp2 == read.next_reference_start:
reads_rmdup += 1
else:
if read.mapping_quality >= mapq:
readBuff.append(read)
prevRead = read
else:
reads_mapq += 1
larp2 = read.next_reference_start
reads_seen += 1
larp = read.pos
else:
for read in sam_iter:
if ((int(read.pos) - int(prevRead.pos)) > minShift):
flush(readBuff, counts)
readBuff = []
# Normal ndups will be appended here
if larp == read.pos:
reads_rmdup += 1
else:
if read.mapping_quality >= mapq:
readBuff.append(read)
prevRead = read
else:
reads_mapq += 1
reads_seen += 1
larp = read.pos
# Flush after we're done
flush(readBuff, counts)
chromosomes[chromName] = counts
reads_kept += sum(counts)
#print reads_seen,reads_kept
qual_info = {'mapped':sam_file.mapped,
'unmapped':sam_file.unmapped,
'no_coordinate':sam_file.nocoordinate,
'filter_rmdup':reads_rmdup,
'filter_mapq':reads_mapq,
'pre_retro':reads_seen,
'post_retro':reads_kept,
'pair_fail':reads_pairf}
return chromosomes, qual_info
def scaleSample(sample, fromSize, toSize):
if fromSize == toSize or toSize == None:
return sample
if toSize == 0 or fromSize == 0 or toSize < fromSize or toSize % fromSize > 0:
print 'ERROR: Impossible binsize scaling requested:', fromSize, 'to', toSize
exit(1)
returnSample = dict()
scale = toSize/fromSize
for chrom in sample:
chromData = sample[chrom]
newLen = int(np.ceil(len(chromData)/float(scale)))
scaledChrom = np.zeros(newLen, dtype=np.int32)
for i in range(newLen):
scaledChrom[i] = np_sum(chromData[int(i*scale):int(i*scale+scale)])
returnSample[chrom] = scaledChrom
return returnSample
def toNumpyArray(samples):
byChrom = []
chromBins = []
sampleCount = len(samples)
for chromosome in range(1, 23):
maxLen = max([sample[str(chromosome)].shape[0] for sample in samples])
thisChrom = np.zeros((maxLen, sampleCount), dtype=float)
chromBins.append(maxLen)
i = 0
for sample in samples:
thisChrom[:, i] = sample[str(chromosome)]
i += 1
byChrom.append(thisChrom)
allData = np.concatenate(byChrom, axis=0)
sumPerSample = np_sum(allData, 0)
allData = allData / sumPerSample
print 'Applying nonzero mask on the data:', allData.shape,
sumPerBin = np_sum(allData, 1)
mask = sumPerBin > 0
maskedData = allData[mask, :]
print 'becomes',maskedData.shape
return maskedData, chromBins, mask
def toNumpyRefFormat(sample, chromBins, mask):
byChrom = []
for chromosome in range(1, 23):
thisChrom = np.zeros(chromBins[chromosome - 1], dtype=float)
minLen = min(chromBins[chromosome - 1], len(sample[str(chromosome)]))
thisChrom[:minLen] = sample[str(chromosome)][:minLen]
byChrom.append(thisChrom)
allData = np.concatenate(byChrom, axis=0)
allData = allData / np_sum(allData)
maskedData = allData[mask]
return maskedData
def inflateArray(array, mask):
temp = np.zeros(mask.shape[0])
j = 0
for i, val in enumerate(mask):
if val:
temp[i] = array[j]
j += 1
return temp
def inflateArrayMulti(array, mask_list):
temp = array
for mask in reversed(mask_list):
temp = inflateArray(temp, mask)
return temp
def getRefForBins(amount, start, end, sampleData, otherData):
refIndexes = np.zeros((end - start, amount), dtype=np.int32)
refDistances = np.ones((end - start, amount))
for thisBin in xrange(start, end):
thisMask = np_sum(np_pow(otherData - sampleData[thisBin, :], 2), 1)
# 209 seconds on 0.5mb size:
thisIndexes = [-1 for i in xrange(amount)]
thisDistances = [1e10 for i in xrange(amount)]
removeIndex = thisIndexes.pop
removeDist = thisDistances.pop
insertIndex = thisIndexes.insert
insertDist = thisDistances.insert
i = 0
curMax = 1e10
for binVal in thisMask:
if binVal < curMax:
pos = find_pos(thisDistances, binVal)
removeIndex(-1)
removeDist(-1)
insertIndex(pos, i)
insertDist(pos, binVal)
curMax = thisDistances[-1]
i += 1
refIndexes[thisBin - start, :] = thisIndexes
refDistances[thisBin - start, :] = thisDistances
return refIndexes, refDistances
def getOptimalCutoff(reference, repeats):
optimalCutoff = float("inf")
mask = np.zeros(reference.shape)
for i in range(0, repeats):
mask = reference < optimalCutoff
average = np.average(reference[mask])
stddev = np.std(reference[mask])
optimalCutoff = average + 3 * stddev
return optimalCutoff, mask
# Returns: Chromosome index, startBinNumber, endBinNumber
def splitByChrom(start, end, chromosomeBinSums):
areas = []
tmp = [0, start, 0]
for i, val in enumerate(chromosomeBinSums):
tmp[0] = i
if val >= end:
break
if start < val < end:
tmp[2] = val
areas.append(tmp)
tmp = [i, val, 0]
tmp[1] = val
tmp[2] = end
areas.append(tmp)
return areas
# Returns: Start and end bin numbers this instance should work on
def getPart(partnum, outof, bincount):
startBin = int(bincount / float(outof) * partnum)
endBin = int(bincount / float(outof) * (partnum + 1))
return startBin, endBin
def getReference(correctedData, chromosomeBins, chromosomeBinSums, selectRefAmount=100, part=1, splitParts=1):
timeStartSelection = time.time()
bigIndexes = []
bigDistances = []
bincount = chromosomeBinSums[-1]
startNum, endNum = getPart(part - 1, splitParts, bincount)
print 'Working on part', part, 'of', splitParts, 'meaning bins', startNum, 'up to', endNum
regions = splitByChrom(startNum, endNum, chromosomeBinSums)
for region in regions:
chrom = region[0]
start = region[1]
end = region[2]
if startNum > start:
start = startNum
if endNum < end:
end = endNum
print part, 'Actual Chromosome area', chromosomeBinSums[chrom] - chromosomeBins[chrom], chromosomeBinSums[chrom]
chromData = np.concatenate((correctedData[:chromosomeBinSums[chrom] - chromosomeBins[chrom], :],
correctedData[chromosomeBinSums[chrom]:, :]))
partIndexes, partDistances = getRefForBins(selectRefAmount, start, end, correctedData, chromData)
bigIndexes.extend(partIndexes)
bigDistances.extend(partDistances)
print part, 'Time spent:', int(time.time() - timeStartSelection), 'seconds'
indexArray = np.array(bigIndexes)
distanceArray = np.array(bigDistances)
return indexArray, distanceArray
def prepSample(sample, chromosome_sizes, mask, pca_mean, pca_components):
testData = toNumpyRefFormat(sample, chromosome_sizes, mask)
testData = applyPCA(testData, pca_mean, pca_components)
return testData
def trySample(testData, testCopy, indexes, distances, chromosomeBins, chromosomeBinSums, cutoff):
bincount = chromosomeBinSums[-1]
resultsZ = np.zeros(bincount)
resultsR = np.zeros(bincount)
refSizes = np.zeros(bincount)
stdDevSum = 0.
stdDevNum = 0
i = 0
for chrom in xrange(len(chromosomeBins)):
start = chromosomeBinSums[chrom] - chromosomeBins[chrom]
end = chromosomeBinSums[chrom]
chromData = np.concatenate(
(testCopy[:chromosomeBinSums[chrom] - chromosomeBins[chrom]], testCopy[chromosomeBinSums[chrom]:]))
for index in indexes[start:end]:
refData = chromData[index[distances[i] < cutoff]]
refData = refData[refData >= 0] # Previously found aberrations may be marked by negative values
refMean = np_mean(refData)
refStdDev = np_std(refData)
if not np.isnan(refStdDev):
stdDevSum += refStdDev
stdDevNum += 1
resultsZ[i] = (testData[i] - refMean) / refStdDev
resultsR[i] = testData[i] / refMean
refSizes[i] = refData.shape[0]
i += 1
return resultsZ, resultsR, refSizes, stdDevSum/stdDevNum
def repeatTest(testData, indexes, distances, chromosomeBins, chromosomeBinSums, cutoff, threshold, repeats):
timeStartTest = time.time()
resultsZ = None
resultsR = None
testCopy = np.copy(testData)
for i in xrange(repeats):
resultsZ, resultsR, refSizes, stdDevAvg = trySample(testData, testCopy, indexes, distances, chromosomeBins,
chromosomeBinSums, cutoff)
testCopy[np_abs(resultsZ) >= threshold] = -1
print 'Time spent on obtaining z-scores:', int(time.time() - timeStartTest), 'seconds'
return resultsZ, resultsR, refSizes, stdDevAvg
# TODO: Take care of regions that flip dup/del
def positionsToStretches(positions, maxDist):
if positions == []:
return []
stretches = []
start = positions[0]
for i, val in enumerate(positions[:-1]):
if positions[i + 1] - val > maxDist:
stretches.append((start, val))
start = positions[i + 1]
stretches.append((start, positions[-1]))
return stretches
def fillTri(region):
tri_arr = TriArr(region.shape[0])
addVal = tri_arr.addValue
for x in xrange(region.shape[0]):
for y in xrange(x, region.shape[0]):
addVal(np_sum(region[x:y+1]) / np_sqrt(y - x + 1))
return tri_arr
def fillTriMin(regionZ,regionR,threshold):
if threshold == 0:
return fillTri(regionZ)
tri_arr = TriArr(regionZ.shape[0])
addVal = tri_arr.addValue
for x in xrange(regionZ.shape[0]):
for y in xrange(x, regionZ.shape[0]):
if abs(np_median(regionR[x:y+1])-1) >= threshold:
addVal(np_sum(regionZ[x:y+1]) / np_sqrt(y - x + 1))
else:
addVal(0)
return tri_arr
def segmentThis(region):
regionLen = region.shape[0]
champReg = (0, regionLen)
champVal = abs(np_mean(region)) * np_sqrt(regionLen)
up = np.median(region) > 1
for x in xrange(regionLen + 1):
for y in xrange(x + 1, regionLen + 1):
thisMean = np_mean(region[x:y])
optVal = abs(thisMean) * np_sqrt(y - x)
if optVal > champVal and thisMean > 1 == up:
champVal = optVal
champReg = (x, y)
return champReg
def stouffSeg(region, threshold):
myResult = []
champVal = np_sum(region) / np_sqrt(region.shape[0])
selection = (0, region.shape[0])
for x in xrange(region.shape[0]):
for y in xrange(x + 1, region.shape[0]):
optVal = np_sum(region[x:y]) / np_sqrt(y - x)
if abs(optVal) > abs(champVal):
champVal = optVal
selection = (x, y)
if abs(champVal) < threshold:
return myResult
if selection[0] > 3:
myResult.extend(stouffSeg(region[:selection[0]], threshold))
myResult.append((champVal, selection))
if selection[1] < region.shape[0] - 3:
rightEnd = stouffSeg(region[selection[1]:], threshold)
rightEnd = [(x[0], (x[1][0] + selection[1], x[1][1] + selection[1])) for x in rightEnd]
myResult.extend(rightEnd)
return myResult
def plotLines(zscores,marks,threshold,sampleName='',binsize=250000,cytoFile=None, chromosomes=range(1,23), columns=2, size=[11.7, 8.3], minEffect=0):
rows = int(np.ceil(len(chromosomes)/float(columns)))
colorHorzHelper = (0.7, 0.7, 0.7)
colorPalette = [
(0, 0, 0), # 0 black
(0.90, 0.60, 0), # 1 Orange
(0.35, 0.70, 0.90), # 2 Sky blue
(0, 0.60, 0.50), # 3 Bluish green
(0.95, 0.90, 0.25), # 4 Yellow
(0, 0.45, 0.70), # 5 Blue
(0.80, 0.40, 0), # 6 Vermillion
(0.80, 0.60, 0.70), # 7 Reddish purple
]
colorMarked = colorPalette[1]
colorMaternal = colorPalette[3]
def preparePlot(index, chromnum):
plt.subplot(rows,columns,index+1)
frame1 = plt.gca()
#frame1.axes.get_xaxis().get_major_ticks()
frame1.axes.xaxis.set_ticklabels([])
#frame1.axes.get_yaxis().get_major_ticks()
#frame1.axes.yaxis.set_ticklabels([])
for tick in frame1.axes.get_yaxis().get_major_ticks():
tick.label.set_fontsize(4)
plt.xlim(0,len(zscores[chromnum]))
plt.axhline(y=0, linewidth=1, color=colorHorzHelper)
plt.axhline(y=threshold, linewidth=0.75, color=colorHorzHelper)
plt.axhline(y=-threshold, linewidth=0.75, color=colorHorzHelper)
move = 0.5
if cytoFile is not None:
cytoDict = loadCytoBands(cytoFile)
for band in cytoDict[str(chromnum+1)]:
start = float(band[0])/binsize
end = float(band[1])/binsize
height=threshold/2
bottom=-threshold-threshold/2
plt.axhline(y=-threshold-threshold/2, linewidth=0.75, color=colorHorzHelper)
alphascale=0.5
if band[3][1:4] == 'pos':
alpha = float(band[3][4:])/100
frame1.add_patch(
matplotlib.patches.Rectangle((start, bottom),
end-start, height,
color='black',
alpha=alpha* alphascale,
linewidth=0.5))
elif band[3] == 'acen':
alpha=1
frame1.add_patch(
matplotlib.patches.Rectangle((start, bottom),
end - start, height,
color='black',
alpha=alpha * alphascale,
hatch='//',
linewidth=0.5))
elif band[3] == 'gvar':
alpha=0.75
frame1.add_patch(
matplotlib.patches.Rectangle((start, bottom),
end - start, height,
color='black',
alpha=alpha * alphascale,
hatch='\\',
linewidth=0.5))
zeros = []
y = 0
for x in zscores[chromnum]:
if x == 0:
zeros.append(y)
y += 1
#print zeros
zeroPatches = positionsToStretches(zeros,1)
for zeroPatch in zeroPatches:
frame1.add_patch(
matplotlib.patches.Rectangle((zeroPatch[0]-0.5, -threshold),
zeroPatch[1]-zeroPatch[0]+1, threshold*2,
color=colorPalette[7],
alpha=0.5,
linewidth=0.5))
for mark in marks:
if mark[0] == chromnum+1 and abs(mark[4])*100 >= minEffect:
colorTmp = colorMarked
if abs(mark[4]) >= 0.2:
colorTmp = colorMaternal
plt.axvline(x=mark[1]-move, linewidth=0.5, color=colorTmp)
plt.axvline(x=mark[2]+move, linewidth=0.5, color=colorTmp)
#plt.axhline(y=mark[3], linewidth=0.5, color=colorTmp)
vertical_dir = threshold
if mark[3] < 0:
vertical_dir = -threshold
#frame1.add_patch(matplotlib.patches.Rectangle((mark[1]-move,0), mark[2]-mark[1]+2*move, mark[3], facecolor=colorTmp, alpha=min(1,abs(mark[4])*10)))
frame1.add_patch(
matplotlib.patches.Rectangle((mark[1] - move, 0), mark[2] - mark[1] + 2 * move, vertical_dir,
facecolor=colorTmp, alpha=min(1, abs(mark[4]) * 10)))
vertical_place = 'bottom'#threshold * 0.75
if mark[3] > 0:
vertical_place = 'top' #*= -1
plt.text(mark[1]+(mark[2]-mark[1])/2, vertical_dir, "{:.1f}".format(mark[3]), fontsize=8,
verticalalignment=vertical_place, horizontalalignment='center')
print 'Plotting Z-Scores'
#ax = plt.figure(figsize=(11.69, 8.27))
ax = plt.figure(figsize=(size[0], size[1]))
#ax.text(0.5, 0.06, 'Chromosomal position in bins', ha='center', va='bottom')
#ax.text(0.05, 0.5, 'Z-score', ha='left', va='center', rotation='vertical')
ax.text(0.5, 0.93, 'Z-score versus chromosomal position - Sample ' + sampleName, ha='center', va='bottom')
for index,chrom in enumerate(chromosomes):
preparePlot(index,chrom-1)
plt.plot(zscores[chrom-1],color=colorPalette[5],linewidth=0.5,alpha=1)
plt.ylabel(chrom)
rectCall = plt.Rectangle((0, 0), 1, 1, fc=colorMarked)
rectNoCall = plt.Rectangle((0, 0), 1, 1, fc=colorPalette[7])
rectZScores = plt.Rectangle((0, 0), 1, 1, fc=colorPalette[5])
rectThreshold = plt.Rectangle((0, 0), 1, 1, fc=colorHorzHelper)
ax.legend((rectCall,rectNoCall,rectZScores,rectThreshold),
('Called region','Uncallable region','Z-score per bin','Z-score threshold'),
'lower center',prop={'size':8}, ncol=2)
return plt