-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathBag_Of_Features.m
249 lines (185 loc) · 8.91 KB
/
Bag_Of_Features.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
%% Clean up
clear;clc;close('all');
% Set a seed for reproducibility of the experiment
s = rng(1);
mkdir Workspace\Codebook
mkdir Workspace\SIFT_features_of_interest_points
mkdir Workspace\Quantized_vector_descriptors
mkdir Workspace\SIFT_features_of_interest_points
%% Initiate the parpool in case you need man power
% delete(gcp)
% maxWorkers = maxNumCompThreads;
% disp("Maximum number of workers: " + maxWorkers);
% pool = parpool(maxWorkers/2);
%% Load the data from the Directory and create the Datastore
fileLocation = uigetdir();
Datastore = imageDatastore(fileLocation,"IncludeSubfolders",true,"LabelSource","foldernames");
initialLabels = countEachLabel(Datastore);
%% Preprocessing
% Initialize the value by which the scaling will be performed and specify the axis to which it will
% be applied.
XScale = 200;
% In order to be able to run the interest point detection algorithm, we will need to change the
% directory so that a specific executable can be executed. For convenience, the user is given the
% option to manually select the place where the Edge_Sampling.m function is stored.
getcurrentDirectory = pwd;
EdgeSamplingLocation = uigetdir();
if isequal(getcurrentDirectory,EdgeSamplingLocation)
else
cd(EdgeSamplingLocation);
end
tic;
[Gray_resized_datastore,Variables] = Edge_Sampling_VN(Datastore,XScale,"WorkspaceDir", ...
[getcurrentDirectory,'\Workspace'], ...
"Show",true);
total_time = toc;
fprintf('\nFinished running interest point operator\n');
fprintf('Total number of images: %d, mean time per image: %f secs\n', numel(Datastore.Files), ...
total_time/numel(Datastore.Files));
%% Feature extraction using SIFT
reset(Gray_resized_datastore)
tic;
features = cell(1,length(Datastore.Files));
for i = 1:length(Datastore.Files)
im = read(Gray_resized_datastore);
[features{i},validPoints{i}] = extractFeatures(im,Variables.interest_points{i},"Method","SIFT");
end
total_time=toc;
cd(getcurrentDirectory)
save('Workspace\SIFT_features_of_interest_points\SIFT_features.mat','features');
save('Workspace\SIFT_features_of_interest_points\validPoints.mat','validPoints');
fprintf('\nFinished running descriptor operator\n');
fprintf('Total number of images: %d, mean time per image: %f secs\n', length(Datastore.Files), ...
total_time/length(Datastore.Files));
%% Codebook Formation
[Trainds,Testds] = splitEachLabel(Gray_resized_datastore.UnderlyingDatastores{:},0.75,'randomized');
Indices = getindices(Trainds,Testds);
descriptors = [];
for i = 1:length(Indices.Train_Indices)
descriptors =[descriptors; features{Indices.Train_Indices(i)}];
end
[~,Codebook,~] = kmeans(gpuArray(double(descriptors)),300,"MaxIter",10,"Replicates",10);
Codebookfilepath = fullfile([getcurrentDirectory,'\Workspace\Codebook'],'Codebook.mat');
save(Codebookfilepath, 'Codebook');
training_descriptors_vq = zeros(length(Indices.Train_Indices),size(Codebook,1));
testing_descriptors_vq = zeros(length(Indices.Test_Indices),size(Codebook,1));
for i=1:length(Indices.Train_Indices)
fprintf('Currently at training image:%d\n',i);
[~,index] = pdist2(Codebook,double(features{Indices.Train_Indices(i)}),'euclidean','Smallest',1);
N = histcounts(index, size(Codebook,1));
% Beware! To obtain the final percentages for BoF we need to divide by the number of keypoints
% per image!
training_descriptors_vq(i,:)= N./length(index);
end
for i=1:length(Indices.Test_Indices)
fprintf('Currently at testing image:%d\n',i);
[~,index] = pdist2(Codebook,double(features{Indices.Test_Indices(i)}),'euclidean','Smallest',1);
N = histcounts(index, size(Codebook,1));
testing_descriptors_vq(i,:)= N./length(index);
end
TrainingVQDfilepath = fullfile([getcurrentDirectory,'\Workspace\Quantized_vector_descriptors'], ...
'training_descriptors_vq.mat');
TestingVQDfilepath = fullfile([getcurrentDirectory,'\Workspace\Quantized_vector_descriptors'], ...
'testing_descriptors_vq.mat');
save(TrainingVQDfilepath,'training_descriptors_vq');
save(TestingVQDfilepath,'testing_descriptors_vq');
%% Training a Classifier
classifier = fitcsvm(training_descriptors_vq,Trainds.Labels, 'OptimizeHyperparameters', ...
'all','HyperparameterOptimizationOptions', struct('MaxObjectiveEvaluations',100,'Kfold',10,...
'Optimizer','gridsearch','NumGridDivisions',20));
[predictedLabels, scores]= predict(classifier,testing_descriptors_vq);
%% Evaluating the Classifier
confusionMatrix = confusionmat(Testds.Labels,predictedLabels);
Accuracy = sum(diag(confusionMatrix)) / sum(confusionMatrix(:))
%% Visualize the Bag of Visual Words for an image
reset(Datastore)
% Define the index of the image to visualize
imageIndex = 1;
% Get the features of the first image
imageFeatures = double(features{Indices.Train_Indices(imageIndex)});
% Compute the nearest codebook centers for the features of the first image
[~, index] = pdist2(Codebook, imageFeatures, 'euclidean', 'Smallest', 1);
% Compute the histogram of the assignments
N = histcounts(index, size(Codebook, 1));
% Normalize the histogram to form the final vector representation
vectorRepresentation = N / length(index);
% Reduce the dimensionality of the codebook using PCA
[coeff, score, ~] = pca(Codebook);
reducedCodebook = score(:, 1:2);
% Create Voronoi cells for the reduced codebook
figure;
voronoi(reducedCodebook(:, 1), reducedCodebook(:, 2));
hold on;
% Highlight the centers that the image was assigned to
highlightedCenters = unique(index);
scatter(reducedCodebook(highlightedCenters, 1), reducedCodebook(highlightedCenters, 2), 100, 'r', 'filled');
% Set axis limits and labels
axis equal;
xlabel('PCA Component 1');
ylabel('PCA Component 2');
title('Voronoi Cells of Codebook with Highlighted Centers');
hold off;
% Load and display the initial image
figure;
subplot(1, 2, 1);
imageFile = Datastore.Files{Indices.Train_Indices(imageIndex)};
image = imread(imageFile);
imshow(image);
title('Initial Image');
% Plot the histogram representation and highlight the centers
subplot(1, 2, 2);
bar(vectorRepresentation, 'r');
hold on;
highlightedValues = vectorRepresentation(highlightedCenters);
bar(highlightedCenters, highlightedValues, 'b');
xticks(1:10:size(Codebook, 1));
xlabel("Codebook components");
ylabel("Percentage of participation for every center");
title("Histogram Representation with Highlighted Centers");
legend('All Centers', 'Assigned Centers');
hold off;
%% Depict the vector of 5 images using t-SNE
% Define the number of images to visualize
numImages = 5;
% Initialize a matrix to store the vector representations
vectorRepresentations = zeros(numImages, size(Codebook, 1));
% Loop through the first numImages images
for imageIndex = 1:numImages
% Get the features of the image
imageFeatures = double(features{Indices.Train_Indices(imageIndex)});
% Compute the nearest codebook centers for the features of the image
[~, index] = pdist2(Codebook, imageFeatures, 'euclidean', 'Smallest', 1);
% Compute the histogram of the assignments
N = histcounts(index, size(Codebook, 1));
% Normalize the histogram to form the final vector representation
vectorRepresentations(imageIndex, :) = N / length(index);
end
% Use t-SNE on the vectorRepresentations to reduce them to 3D
reducedVectorRepresentations = tsne(vectorRepresentations, 'NumDimensions', 3);
% Plot the vector representations in a 3D space
figure('Color', 'w'); % Set background color to white
set(gcf, 'Units', 'normalized', 'Position', [0.1 0.1 0.8 0.8]); % Resize the figure
hold on;
colormap(parula(numImages)); % Use a colorful colormap
scatter3(reducedVectorRepresentations(:, 1), reducedVectorRepresentations(:, 2), reducedVectorRepresentations(:, 3), 100, 1:numImages, 'filled');
textColor = 'k'; % Set the text color for all vectors
for i = 1:numImages
% Plot the vector representation
quiver3(0, 0, 0, reducedVectorRepresentations(i, 1), reducedVectorRepresentations(i, 2), reducedVectorRepresentations(i, 3), 'Color', colors(i, :), 'LineWidth', 2);
% Place the text label in a distinct location
textX = reducedVectorRepresentations(i, 1) * 1.1;
textY = reducedVectorRepresentations(i, 2) * 1.1;
textZ = reducedVectorRepresentations(i, 3) * 1.1;
text(textX, textY, textZ, sprintf('Image %d', i), 'FontSize', 12, 'Color', textColor, 'HorizontalAlignment', 'center');
end
xlabel('t-SNE Dimension 1', 'FontSize', 14);
ylabel('t-SNE Dimension 2', 'FontSize', 14);
zlabel('t-SNE Dimension 3', 'FontSize', 14);
title('3D Vector Representations of the First 5 Images using t-SNE', 'FontSize', 16);
grid on;
view(3); % Set the default 3D view
box on;
% Add a light source and adjust the lighting
camlight('headlight');
lighting('gouraud');
hold off;