Skip to content

Latest commit

 

History

History
204 lines (151 loc) · 5.43 KB

README.md

File metadata and controls

204 lines (151 loc) · 5.43 KB

Pytorch Implementation of PointCAT

This is the original PyTorch implementation of PointCAT: Cross-Attention Transformer for point cloud.

Paper link: https://arxiv.org/pdf/2304.03012.pdf.

Install

The latest codes are tested on Windows 10, CUDA11.3, PyTorch 1.11.0 and Python 3.9:

conda install pytorch==1.11.0 torchvision==0.12.0 torchaudio==0.11.0 cudatoolkit=11.3 -c pytorch

pointnet2_ops_lib:

pip install pointnet2_ops_lib/.

Requirement

einops==0.6.0
h5py==3.6.0
matplotlib==3.5.2
numpy==1.21.5
open3d==0.15.1
pandas==1.4.2
pointnet2_ops==3.0.0
pyntcloud==0.3.1
scikit_learn==1.2.2
scipy==1.8.0
thop==0.1.1.post2209072238
timm==0.6.7
tqdm==4.64.0

architecture for Shape Classification

Classification (ModelNet40)

Data Preparation

Download ModelNet40 dataset here and save in classification_ModelNet40\utils\data.

Train & Test

# Classification on ModelNet40
cd ./classification_ModelNet40

# Train
python train.py --batch_size 16 --use_sgd --learning_rate 0.01

# Test
python test.py --batch_size 16 --checkpoint your_chekpoint_root  

Paper Result

Download our best model in google drive here and save in ./classification_ModenNet40/checkpoints/best_checkpoints.

python test.py --checkpoint checkpoints/best_checkpoints ## Test result: 93.5% OA & 90.9% mAcc

Performance

Model Inputs Over All Accuracy (%) Mean Accuracy (%) Vote
PointCAT 1024 points 93.5% 90.9% ×

Part Segmentation (ShapeNet)

Data Preparation

Download alignment ShapeNetPart here and save in part_segmentation/data/shapenetcore_partanno_segmentation_benchmark_v0_normal/.

Run

# Part Segmentation on ShapeNetPart
cd ./part_segmentation

# Train
python train.py --exp_name "your_exp_name" --lr 0.003 --batch_size 16 --epochs 250

# Test
python train.py --exp_name "your_exp_name" --eval

Performance

Cls. mIoU Inst. mIoU aero bag cap car chair earphone guitar
84.4 86.0 83.0 83.8 90.1 79.8 90.2 83.4 91.8
knife lamp laptop motorbike mug pistol rocket skateboard table
87.8 82.5 95.9 76.1 95.4 84.9 68.5 83.1 84.3

Visualization

# Visualization of Part Segmentation Results
cd ./part_segmentation

img_root = './data/shapenetcore_partanno_segmentation_benchmark_v0_normal'
model_root = './checkpoints/your_experiment_root'  # dir to your checkpoints
target_root = './results/your_result_root'  # dir to save the result

# Visualization
python vis.py  # 

Semantic Segmentation (S3DIS)

Data Preparation

Download 3D indoor parsing dataset (S3DIS) here and save in data/s3dis/Stanford3dDataset_v1.2_Aligned_Version/.

cd data_utils
python collect_indoor3d_data.py

Processed data will save in data/stanford_indoor3d/. The data structure be like:

├─stanford_indoor3d
|         ├─Area_1_conferenceRoom_1.npy
|         ├─Area_1_conferenceRoom_2.npy
|         ├─Area_1_copyRoom_1.npy
|         ├─Area_1_hallway_1.npy
|         ├─Area_1_hallway_2.npy
|         ├─Area_1_hallway_3.npy
		  ...............

Run

# Semantic Segmentation on S3DIS
cd ./seg_segmentation

# Train
python train.py --learning_rate 0.001 --optimizer AdamW  --test_area 5 

# Test
python test_semseg.py --log_dir your_expriment_root --visiual --test_area 5

Visualization

Visualization results will save in log/sem_seg/your_expriment_root/visual/ and you can transform these .obj files to .txt by these command:

cd ./seg_segmentation/data

# Vis
python input_vis.py

Performance

Reference By

charlesq34/PointNet++

Citation

If you find this repo useful in your research, please consider citing it and our other works:

@article{Pytorch_Pointnet_Pointnet2,
      Author = {Xu Yan},
      Title = {Pointnet/Pointnet++ Pytorch},
      Journal = {https://github.com/yanx27/Pointnet_Pointnet2_pytorch},
      Year = {2019}
}

@misc{guo2020pct,
      title={PCT: Point Cloud Transformer}, 
      author={Meng-Hao Guo and Jun-Xiong Cai and Zheng-Ning Liu and Tai-Jiang Mu and Ralph R. Martin and Shi-Min Hu},
      year={2020},
      eprint={2012.09688},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

@misc{yang2023pointcat,
      title={PointCAT: Cross-Attention Transformer for point cloud}, 
      author={Xincheng Yang and Mingze Jin and Weiji He and Qian Chen},
      year={2023},
      eprint={2304.03012},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

Selected Projects using This Codebase

PCT: Point Cloud Transformer

Pytorch_Pointnet_Pointnet2