forked from jmcmahan/LinVer-Matlab
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdemo_case1.m
executable file
·110 lines (85 loc) · 2.82 KB
/
demo_case1.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
N = 300; % Number of data points
Nbeta = 2; % Number of regression parameters
% True parameters. These are used to generate data and that
% data is used to infer these parameters.
beta = randn(Nbeta, 1)*10;
%lambda = 2 + rand*5;
lambda = 100 + rand*200;
phi = 0.5;
% Non-informative prior only needs the type
prior_noninformative.type = 'noninformative';
% Gaussian prior needs the mean and covariance specified
prior_gaussian.type = 'gaussian'; % Gaussian prior
prior_gaussian.sigma0 = eye(Nbeta); % Prior unscaled covariance
prior_gaussian.mu0 = beta*1.1; % Prior mean
% This is the design matrix.
G = randn(N, Nbeta);
G(:,1) = 1;
param1.N = N;
param1.Nbeta = Nbeta;
param1.G = G;
param1.prior = prior_noninformative;
param1.beta = beta;
param1.lambda = lambda;
param1.phi = phi;
param1.betarange = [-100*ones(Nbeta, 1), 100*ones(Nbeta, 1)];
% Correlation type
param1.corrfunc = 'none';
% Which parameters are unknown
param1.unknowns = 'beta';
% Generate the Gaussian observation error
e1 = eval_noise(param1);
% This is the data to fit the parameters to.
param1.y = G*beta + e1 / sqrt(lambda);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Uncorrelated error
% Non-informative prior
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
disp('***********************************************')
disp('Beta unknown, uncorrelated noise, uniform prior')
disp('***********************************************')
post1 = eval_posterior(param1);
result1 = demo_energy_test(param1, post1);
disp('Done.')
disp(' ')
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Uncorrelated error
% Gaussian prior
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Copy everything...
param2 = param1;
% ... but change to Gaussian prior
param2.prior = prior_gaussian;
post2 = eval_posterior(param2);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Equi-correlated error
% Non-informative prior
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
param3 = param1;
param3.corrfunc = 'equal';
e3 = eval_noise(param3);
param3.y = G*beta + e3 / sqrt(lambda);
post3 = eval_posterior(param3);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Equi-correlated error
% Gaussian prior
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
param4 = param3;
param4.prior = prior_gaussian;
post4 = eval_posterior(param4);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% AR(1) correlated error
% Non-informative prior
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
param5 = param1;
param5.corrfunc = 'ar';
e5 = eval_noise(param5);
param5.y = G*beta + e5 / sqrt(lambda);
post5 = eval_posterior(param5);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% AR(1) correlated error
% Gaussian prior
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
param6 = param5;
param6.prior = prior_gaussian;
post6 = eval_posterior(param6);