forked from jmcmahan/LinVer-Matlab
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdo_simple_mcmc.m
executable file
·194 lines (160 loc) · 5.13 KB
/
do_simple_mcmc.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
function [qchain, aratio, oob] = do_simple_mcmc(param, post, Nchain)
% [chain, aratio] = do_simple_mcmc(param) - Use a Metropolis-Hastings algorithm to generate
% a 10,000 iterate chain drawn from the posterior of the problem defined by param.
% Acceptance ratio returned as aratio.
%
% [chain, aratio] = do_simple_mcmc(param, post) - Same as above but use the posterior
% estimates to initialize the proposal matrix.
%
% [chain, aratio] = do_simple_mcmc(param, post, Nchain) - Same as above, but generate Nchain
% samples.
%
% NOTE: This does not use any of the unknown parameters in anyway.
if nargin < 3
Nchain = 1e4;
end
Nbeta = param.Nbeta;
y = param.y;
G = param.G;
if strcmp(param.unknowns, 'beta')
calcase = 1;
Np = Nbeta;
ll = @(q) log_likelihood(param, q);
elseif strcmp(param.unknowns, 'beta_lambda')
calcase = 2;
Np = Nbeta + 1;
ll = @(q) log_likelihood(param, q(1:Nbeta), q(Nbeta+1));
elseif strcmp(param.unknowns, 'beta_lambda_phi')
calcase = 3;
Np = Nbeta + 2;
ll = @(q) log_likelihood(param, q(1:Nbeta), q(Nbeta+1), q(Nbeta+2));
end
% Set up parameter ranges
if calcase == 1
qrange = param.betarange;
elseif calcase == 2
qrange = [param.betarange; param.lambdarange];
elseif calcase == 3
qrange = [param.betarange; param.lambdarange; param.phirange];
end
qchain = zeros(Nchain, Np);
% For now, initialize to the true values. This isn't as unfair as it
% sounds since we're looking at distributions, not the single guess,
% and this wouldn't guarantee the distribution is correct.
qchain(1, 1:Nbeta) = param.beta;
if calcase > 1
qchain(1, Nbeta+1) = param.lambda;
end
if calcase > 3
qchain(1, Nbeta+2) = param.phi;
end
% NOTE: Using the actual value of beta for simplicity. A somewhat better
% exercise would be to use the MLE estimate. Since we are verifying the
% distribution, though, and not just the point estimate, this should still
% provide a reasonable test.
% Also worth noting - this is using the true value of phi to evaluate
% Ri. This is also additional accuracy, but again, shouldn't be too
% detrimental for this test.
res = y - G*param.beta;
Ri = eval_corrfuncinv(param);
s2ols = res'*Ri*res / (param.N - Np);
V = zeros(Np);
V(1:param.Nbeta, 1:param.Nbeta) = s2ols*inv(G'*Ri*G);
if calcase > 1
% For now, just put something reasonable for the range of the hyper
% parameters we're using in testing.
%V(param.Nbeta+1, param.Nbeta+1) = 10;
lrange = param.lambdarange(2) - param.lambdarange(1);
V(param.Nbeta+1, param.Nbeta+1) = lrange / 50;
end
if calcase > 2
prange = param.phirange(2) - param.phirange(1);
V(end, end) = prange / 100;
end
L = chol(V)';
acceptnum = 1;
oob = 0;
for k = 2:Nchain
accept = false;
if ~mod(k, fix(Nchain/100))
disp(sprintf('Percent complete: %d%%\tAcceptance Ratio: %d', ...
round(100*k/Nchain), acceptnum/(k-1)))
end
qp = qchain(k-1, :)';
qstar = qp + L*randn(Np, 1);
if sum(qstar <= qrange(:, 1)) || sum(qstar >= qrange(:, 2))
% Set the probability to 0 if the sample is out-of-bounds
oob = oob + 1;
r = 0;
else
r = exp(ll(qstar) - ll(qp));
end
if r >= 1
qchain(k,:) = qstar';
accept = true;
else
flip = rand;
if flip < r
qchain(k,:) = qstar';
accept = true;
else
qchain(k,:) = qp';
end
end
if accept
acceptnum = acceptnum + 1;
end
end
aratio = acceptnum/Nchain;
end
function ll = log_likelihood(param, beta, lambda, phi)
% Evaluate the log-likelihood, using the number of arguments passed to
% determine the correct form of the likelihood function to use.
G = param.G; y = param.y;
N = param.N; Nbeta = param.Nbeta;
prior = param.prior;
if nargin < 4
phi = param.phi;
end
if nargin < 3
lambda = param.lambda;
end
Ri = eval_corrfuncinv(param, phi);
res = y - G*beta;
if strcmp(prior.type, 'noninformative')
if nargin == 2
% Beta unknown
ll = - 0.5 * lambda * res'*Ri*res;
elseif nargin == 3
% Beta, lambda unknown
ll = (0.5*N-1) * log(lambda) ...
- 0.5 * lambda * res'*Ri*res;
elseif nargin == 4
% Beta, lambda, phi unknown
d = eval_det(param, phi);
ll = - 0.5*log(d) ...
+ (0.5*N-1) * log(lambda) ...
- 0.5 * lambda * res'*Ri*res;
end
elseif strcmp(prior.type, 'gaussian')
mu0 = prior.mu0; sigma0 = prior.sigma0;
resbeta = mu0 - beta;
if nargin == 2
% Beta unknown
ll = - 0.5 * lambda * res'*Ri*res
- 0.5 * lambda * resbeta'*inv(sigma0)*resbeta;
elseif nargin == 3
% Beta, lambda unknown
ll = (0.5*(N+Nbeta) - 1) * log(lambda) ...
- 0.5 * lambda * res'*Ri*res
- 0.5 * lambda * resbeta'*inv(sigma0)*resbeta;
elseif nargin == 4
% Beta, lambda, phi unknown
d = eval_det(param, phi);
ll = - 0.5*log(d) ...
+ (0.5*(N+Nbeta)-1) * log(lambda) ...
- 0.5 * res'*Ri*res / lambda;
- 0.5 * lambda * resbeta'*inv(sigma0)*resbeta;
end
end
end