forked from jmcmahan/LinVer-Matlab
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdram_example1_gaussian.m
executable file
·78 lines (61 loc) · 3.31 KB
/
dram_example1_gaussian.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
% Equicorrelation, beta fit
param.N = 300; % Number of data points
param.beta = [1.5; 3.5]; % True regression parameters
param.Nbeta = length(param.beta); % Number of regression parameters
param.lambda = 10.0; % True scale parameter
param.phi = 0.2; % True correlation parameter
param.corrfunc = 'equal'; % Correlation function
param.prior.type = 'gaussian'; % Use non-informative prior
param.unknowns = 'beta'; % Compute posterior for the regression parameters only
param.G = randn(param.N, param.Nbeta); % Design matrix...
param.G(:,1) = 1; % ...with first regression parameter a bias term.
param.betarange = [-100*ones(param.Nbeta, 1), 100*ones(param.Nbeta, 1)];
param.prior.sigma0 = 0.1*eye(param.Nbeta); % Prior unscaled covariance
param.prior.mu0 = [2; 3]; % Prior mean
y0 = param.G * param.beta; % Error-free observation data
e = eval_noise(param); % Generate unscaled observation error
param.y = y0 + e / sqrt(param.lambda); % Add error to create data for calibration
y = param.y;
G = param.G;
post = eval_posterior(param); % Compute posterior
br = linspace(-1, 5)'; % Range to evaluate the beta posterior on
b1 = linspace(post.mu2(1) - sqrt(post.sigma2(1,1))*2.5, post.mu2(1) + sqrt(post.sigma2(1,1))*2.5,500);
b2 = linspace(post.mu2(2) - sqrt(post.sigma2(2,2))*2.5, post.mu2(2) + sqrt(post.sigma2(2,2))*2.5,500);
[brx, bry] = meshgrid(b1,b2);
br = [brx(:), bry(:)];
bpost = post.pbeta(br);
% 100 samples from a distribution different than the posterior
bad_sample = randn(100,2);
% 100 samples from same distribution as posterior
% This would be a less manual way to draw from the posterior
good_sample = draw_posterior_sample(param, post, 100);
param.nsimu = 100000;
% Draw from DRAM to verify
sol = dram_from_linver(param);
good_sample = sol.chain(20001:500:end, :);
% Draw sample from DRAM with bug added to sum-of-squares function
solbad = dram_from_linver(param, true);
bad_sample = solbad.chain(20001:500:end, :);
% Confidence level
alpha = 0.01;
% Number of tests to run
numtests = 500;
% Do the energy tests for each of these samples
disp('Test Key:')
disp('1 Indicates Sample Significantly Different.')
disp('0 Indicates Sample No Significant Difference Found.')
result_good = do_energy_test(good_sample, param, post, alpha, numtests);
result_bad = do_energy_test(bad_sample, param, post, alpha, numtests);
disp(' ')
disp('Good sample results:')
disp(result_good.fail_ratio)
disp('Should not significantly exceed alpha = 0.1.')
disp(' ')
disp('Bad sample results:')
disp(result_bad.fail_ratio)
disp('Hopefully exceeds alpha = 0.1. ')
disp(' ')
disp('Note that small sample size used may allow number of failures')
disp('in the good sample to be somewhat higher than 0.1. Ratio should')
disp('be much smaller than that of the bad sample, though.')
save('dram_example1_gaussian.mat', 'result_good', 'result_bad', 'good_sample', 'bad_sample', 'sol', 'solbad', 'G','y', 'e', 'post', '-mat')