Skip to content

Latest commit

 

History

History
145 lines (106 loc) · 13.6 KB

README.md

File metadata and controls

145 lines (106 loc) · 13.6 KB

ML_class

学堂在线《机器学习》实验课代码+报告(其中实验1和实验6有配套PPT),授课老师为张敏老师。课程链接:https://www.xuetangx.com/training/ML080910036802/1048372?channel=i.area.page_course_ad。

持续更新中。 所有代码为作者所写,并非最后的“标准答案”,只有课程设计被扣了1分,其余皆是满分。仓库链接:https://github.com/W-caner/ML_class。 此外,欢迎关注我的CSDN:https://blog.csdn.net/Can__er?type=blog。 部分数据集由于过大无法上传,我会在博客中给出下载链接。如果对代码有疑问,有更好的思路等,也非常欢迎在评论区与我交流~

补充说明

  • 本课程开源已获得老师和助教同意,借鉴请注明仓库,切勿直接抄袭
  • 实验6涉及的测试集label问题是因为我之前接触过该数据集,所以自己编写规则获取了label,请自行使用训练集划分进行替换
  • 接受无偿且礼貌的问题讨论,不接受无偿又没礼貌的质询,接受有偿改代码/1对1指导。如有需要请csdn私信

EXP1 基于决策树的英雄联盟游戏胜负预测

任务介绍

英雄联盟(League of Legends,LoL)是一个多人在线竞技游戏,由拳头游戏(Riot Games)公司出品。在游戏中,每位玩家控制一位有独特技能的英雄,红蓝两支队伍各有五位玩家进行对战,目标是摧毁对方的基地水晶。水晶有多座防御塔保护,通常需要先摧毁一些防御塔再摧毁水晶。玩家所控制的英雄起初非常弱,需要不断击杀小兵、野怪和对方英雄来获得金币、经验。经验可以提升英雄等级和技能等级,金币可以用来购买装备提升攻击、防御等属性。对战过程中一般没有己方单位在附近的地点是没有视野的,即无法看到对面单位,双方可以通过使用守卫来监视某个地点,洞察对面走向、制定战术。 本数据集来自Kaggle,包含了9879场钻一到大师段位的单双排对局,对局双方几乎是同一水平。每条数据是前10分钟的对局情况,每支队伍有19个特征,红蓝双方共38个特征。这些特征包括英雄击杀、死亡,金钱、经验、等级情况等等。一局游戏一般会持续30至40分钟,但是实际前10分钟的局面很大程度上影响了之后胜负的走向。作为最成功的电子竞技游戏之一,对局数据、选手数据的量化与研究具有重要意义,可以启发游戏将来的发展和改进。

本任务是希望同学们依据注释的要求,对代码中空缺部分进行填写,完成决策树模型的详细实现,根据已有的对局前10分钟特征信息,预测最后获胜方是蓝色方还是红色方,了解执行一个机器学习任务的大致流程,并提交代码和实验报告。第一次作业也是一个机器学习小实验的例子,之后的作业可能不再提供预处理等流程代码,由同学们自己设计实验完成代码编写。

Exp2:基于回归分析的大学综合得分预测

一、案例简介

大学排名是一个非常重要同时也极富挑战性与争议性的问题,一所大学的综合实力涉及科研、师资、学生等方方面面。目前全球有上百家评估机构会评估大学的综合得分进行排序,而这些机构的打分也往往并不一致。在这些评分机构中,世界大学排名中心(Center for World University Rankings,缩写CWUR)以评估教育质量、校友就业、研究成果和引用,而非依赖于调查和大学所提交的数据著称,是非常有影响力的一个。

本任务中我们将根据 CWUR 所提供的世界各地知名大学各方面的排名(师资、科研等),一方面通过数据可视化的方式观察不同大学的特点,另一方面希望构建机器学习模型(线性回归)预测一所大学的综合得分。

二、作业说明

使用来自 Kaggle 的数据,构建「线性回归」模型,根据大学各项指标的排名预测综合得分。

基本要求:

  • 按照 8:2 随机划分训练集测试集,用 RMSE 作为评价指标,得到测试集上线性回归模型的 RMSE 值;
  • 对线性回归模型的系数进行分析。

扩展要求:

  • 对数据进行观察与可视化,展示数据特点;
  • 尝试其他的回归模型,对比效果;
  • 尝试将离散的地区特征融入线性回归模型,并对结果进行对比。

注意事项:

  • 基本输入特征有 8 个:quality_of_education, alumni_employment, quality_of_faculty, publications, influence, citations, broad_impact, patents
  • 预测目标为score
  • 可以使用 sklearn 等第三方库,不要求自己实现线性回归;
  • 需要保留所有数据集生成、模型训练测试的代码;

EXP3 贝叶斯垃圾邮件识别

本次作业以垃圾邮件分类任务为基础,要求提取文本特征并使用朴素贝叶斯算法进行垃圾邮件识别(调用已有工具包或自行实现)。

任务介绍

电子邮件是互联网的一项重要服务,在大家的学习、工作和生活中会广泛使用。但是大家的邮箱常常被各种各样的垃圾邮件填充了。有统计显示,每天互联网上产生的垃圾邮件有几百亿近千亿的量级。因此,对电子邮件服务提供商来说,垃圾邮件过滤是一项重要功能。而朴素贝叶斯算法在垃圾邮件识别任务上一直表现非常好,至今仍然有很多系统在使用朴素贝叶斯算法作为基本的垃圾邮件识别算法。

本次实验数据集来自Trec06的中文垃圾邮件数据集,目录解压后包含三个文件夹,其中data目录下是所有的邮件(未分词),已分词好的邮件在data_cut目录下。邮件分为邮件头部分和正文部分,两部分之间一般有空行隔开。标签数据在label文件夹下,文件中每行是标签和对应的邮件路径。‘spam’表示垃圾邮件,‘ham’表示正常邮件。

本次实验

基本要求:

  1. 提取正文部分的文本特征;
  2. 划分训练集和测试集(可以借助工具包。一般笔记本就足够运行所有数据,认为实现困难或算力不够的同学可以采样一部分数据进行实验。);
  3. 使用朴素贝叶斯算法完成垃圾邮件的分类与预测,要求测试集准确率Accuracy、精准率Precision、召回率Recall均高于0.9(本次实验可以使用已有的一些工具包完成如sklearn);
  4. 对比特征数目(词表大小)对模型效果的影响;
  5. 提交代码和实验报告。

扩展要求:

  1. 邮件头信息有时也可以协助判断垃圾邮件,欢迎学有余力的同学们尝试;
  2. 尝试自行实现朴素贝叶斯算法细节;
  3. 尝试对比不同的概率计算方法。

EXP4 AAAI会议论文聚类分析

本次实验以AAAI 2014会议论文数据为基础,要求实现或调用无监督聚类算法,了解聚类方法。

任务介绍

每年国际上召开的大大小小学术会议不计其数,发表了非常多的论文。在计算机领域的一些大型学术会议上,一次就可以发表涉及各个方向的几百篇论文。按论文的主题、内容进行聚类,有助于人们高效地查找和获得所需要的论文。本案例数据来源于AAAI 2014上发表的约400篇文章,由UCI公开提供,提供包括标题、作者、关键词、摘要在内的信息,希望大家能根据这些信息,合理地构造特征向量来表示这些论文,并设计实现或调用聚类算法对论文进行聚类。最后也可以对聚类结果进行观察,看每一类都是什么样的论文,是否有一些主题。

基本要求:

  1. 将文本转化为向量,实现或调用无监督聚类算法,对论文聚类,例如10类(可使用已有工具包例如sklearn);
  2. 观察每一类中的论文,调整算法使结果较为合理;
  3. 无监督聚类没有标签,效果较难评价,因此没有硬性指标,跑通即可,主要让大家了解和感受聚类算法,比较简单。

扩展要求:

  1. 对文本向量进行降维,并将聚类结果可视化成散点图。

注:group和topic也不能完全算是标签,因为

  1. 有些文章作者投稿时可能会选择某个group/topic但实际和另外group/topic也相关甚至更相关;
  2. 一篇文章可能有多个group和topic,作为标签会出现有的文章同属多个类别,这里暂不考虑这样的聚类;
  3. group和topic的取值很多,但聚类常常希望指定聚合成出例如5/10/20类;
  4. 感兴趣但同学可以思考利用group和topic信息来量化评价无监督聚类结果,不作要求。

提示:

  1. 高维向量的降维旨在去除一些高相关性的特征维度,保留最有用的信息,用更低维的向量表示高维数据,常用的方法有PCA和t-SNE等;
  2. 降维与聚类是两件不同的事情,聚类实际上在降维前的高维向量和降维后的低维向量上都可以进行,结果也可能截然不同;
  3. 高维向量做聚类,降维可视化后若有同一类的点不在一起,是正常的。在高维空间中它们可能是在一起的,降维后损失了一些信息。

EXP5 基于集成学习的Amazon用户评论质量预

一、案例简介

图像的智能处理一直是人工智能领域广受关注的一类技术,代表性的如人脸识别与 CT 肿瘤识别,在人工智能落地的进程中发挥着重要作用。其中车牌号识别作为一个早期应用场景,已经融入日常生活中,为我们提供了诸多便利,在各地的停车场和出入口都能看到它的身影。车牌号识别往往分为字符划分和字符识别两个子任务,本案例我们将关注字符识别的任务,尝试用 K-NN 的方法对分割好的字符图像进行自动识别和转化。

二、作业说明

基本要求

  • 完成数据的读入和表示,将图片表示成向量并和 label 对应上;
  • 构建 K-NN 模型(可调库)对测试集中的图片进行预测并计算准确率;
  • 分析当 K 取不同值时测试准确率的变化。

扩展要求

  • 分析不同距离度量方式对模型效果的影响;
  • 对比平权和加权 K-NN 的效果;
  • 分析训练集大小对测试结果的影响。

EXP6 基于集成学习的Amazon用户评论质量预测

一、案例简介

随着电商平台的兴起,以及疫情的持续影响,线上购物在我们的日常生活中扮演着越来越重要的角色。在进行线上商品挑选时,评论往往是我们十分关注的一个方面。然而目前电商网站的评论质量参差不齐,甚至有水军刷好评或者恶意差评的情况出现,严重影响了顾客的购物体验。因此,对于评论质量的预测成为电商平台越来越关注的话题,如果能自动对评论质量进行评估,就能根据预测结果避免展现低质量的评论。本案例中我们将基于集成学习的方法对 Amazon 现实场景中的评论质量进行预测。

二、作业说明

本案例中需要大家完成两种集成学习算法的实现(Bagging、AdaBoost.M1),其中基分类器要求使用 SVM 和决策树两种,因此,一共需要对比四组结果(AUC 作为评价指标):

  • Bagging + SVM
  • Bagging + 决策树
  • AdaBoost.M1 + SVM
  • AdaBoost.M1 + 决策树

注意集成学习的核心算法需要手动进行实现,基分类器可以调库。

基本要求

  • 根据数据格式设计特征的表示
  • 汇报不同组合下得到的 AUC
  • 结合不同集成学习算法的特点分析结果之间的差异
  • (使用 sklearn 等第三方库的集成学习算法会酌情扣分)

扩展要求

  • 尝试其他基分类器(如 k-NN、朴素贝叶斯)
  • 分析不同特征的影响
  • 分析集成学习算法参数的影响

课程设计 某闯关类手游用户流失预测

一、案例简介

手游在当下的日常娱乐中占据着主导性地位,成为人们生活中放松身心的一种有效途径。近年来,各种类型的手游,尤其是闯关类的休闲手游,由于其对碎片化时间的利用取得了非常广泛的市场。然而在此类手游中,新用户流失是一个非常严峻的问题,有相当多的新用户在短暂尝试后会选择放弃,而如果能在用户还没有完全卸载游戏的时候针对流失可能性较大的用户施以干预(例如奖励道具、暖心短信),就可能挽回用户从而提升游戏的活跃度和公司的潜在收益,因此用户的流失预测成为一个重要且挑战性的问题。在毕业项目中我们将从真实游戏中非结构化的日志数据出发,构建用户流失预测模型,综合已有知识设计适合的算法解决实际问题。

二、作业说明

  • 根据给出的实际数据(包括用户游玩历史,关卡特征等),预测测试集中的用户是否为流失用户(二分类);
  • 方法不限,使用百度云进行评测,评价指标使用 AUC;
  • 提交代码与实验报告,报告展示对数据的观察、分析、最后的解决方案以及不同尝试的对比等;
  • 最终评分会参考达到的效果以及对所尝试方法的分析。