Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Unable to get the results in the paper #24

Open
RainioTop opened this issue Nov 17, 2024 · 0 comments
Open

Unable to get the results in the paper #24

RainioTop opened this issue Nov 17, 2024 · 0 comments

Comments

@RainioTop
Copy link

I don't know why I repeated the experiments on the Pedestrian dataset under Windows+3080 and Ubuntu+4090 and could not get the results in the paper using the SAITS model.

official results:

Averaged SAITS (n params: 133,406) on Pedestrian: MAE=0.1308 ± 0.0056997420575773255, MSE=0.0801 ± 0.005813939699903779, MRE=0.1788 ± 0.007789561616061213, average inference time=0.15

The command I use is:

python train_model.py --model SAITS --dataset Pedestrian --dataset_fold_path data/generated_datasets/melbourne_pedestrian_rate01_step24_point --saving_path results_point_rate01 --device cuda

The log of Windows+3080:

2024-11-14 22:08:51 [INFO]: Have set the random seed as 2024 for numpy and pytorch.
2024-11-14 22:08:51 [INFO]: Using the given device: cuda
2024-11-14 22:08:51 [INFO]: Model files will be saved to results_point_rate01\SAITS_Pedestrian\round_0\20241114_T220851
2024-11-14 22:08:51 [INFO]: Tensorboard file will be saved to results_point_rate01\SAITS_Pedestrian\round_0\20241114_T220851\tensorboard
2024-11-14 22:08:51 [INFO]: SAITS initialized with the given hyperparameters, the number of trainable parameters: 133,406
2024-11-14 22:08:52 [INFO]: Epoch 001 - training loss: 0.9746, validation loss: 0.4494
2024-11-14 22:08:53 [INFO]: Epoch 002 - training loss: 0.7927, validation loss: 0.3881
2024-11-14 22:08:53 [INFO]: Epoch 003 - training loss: 0.7320, validation loss: 0.3801
2024-11-14 22:08:53 [INFO]: Epoch 004 - training loss: 0.7122, validation loss: 0.3572
2024-11-14 22:08:54 [INFO]: Epoch 005 - training loss: 0.6885, validation loss: 0.3527
2024-11-14 22:08:54 [INFO]: Epoch 006 - training loss: 0.6447, validation loss: 0.3104
2024-11-14 22:08:55 [INFO]: Epoch 007 - training loss: 0.5843, validation loss: 0.2883
2024-11-14 22:08:55 [INFO]: Epoch 008 - training loss: 0.5427, validation loss: 0.2177
2024-11-14 22:08:55 [INFO]: Epoch 009 - training loss: 0.4953, validation loss: 0.1858
2024-11-14 22:08:56 [INFO]: Epoch 010 - training loss: 0.4851, validation loss: 0.1348
2024-11-14 22:08:56 [INFO]: Epoch 011 - training loss: 0.4602, validation loss: 0.1433
2024-11-14 22:08:57 [INFO]: Epoch 012 - training loss: 0.4524, validation loss: 0.1558
2024-11-14 22:08:57 [INFO]: Epoch 013 - training loss: 0.4336, validation loss: 0.1371
2024-11-14 22:08:57 [INFO]: Epoch 014 - training loss: 0.4182, validation loss: 0.1426
2024-11-14 22:08:58 [INFO]: Epoch 015 - training loss: 0.4147, validation loss: 0.1352
2024-11-14 22:08:58 [INFO]: Epoch 016 - training loss: 0.4080, validation loss: 0.1333
2024-11-14 22:08:59 [INFO]: Epoch 017 - training loss: 0.3993, validation loss: 0.1205
2024-11-14 22:08:59 [INFO]: Epoch 018 - training loss: 0.3893, validation loss: 0.0930
2024-11-14 22:08:59 [INFO]: Epoch 019 - training loss: 0.3894, validation loss: 0.1184
2024-11-14 22:09:00 [INFO]: Epoch 020 - training loss: 0.3788, validation loss: 0.1233
2024-11-14 22:09:00 [INFO]: Epoch 021 - training loss: 0.3820, validation loss: 0.1143
2024-11-14 22:09:01 [INFO]: Epoch 022 - training loss: 0.3863, validation loss: 0.1381
2024-11-14 22:09:01 [INFO]: Epoch 023 - training loss: 0.3638, validation loss: 0.1125
2024-11-14 22:09:01 [INFO]: Epoch 024 - training loss: 0.3633, validation loss: 0.1085
2024-11-14 22:09:02 [INFO]: Epoch 025 - training loss: 0.3572, validation loss: 0.1190
2024-11-14 22:09:02 [INFO]: Epoch 026 - training loss: 0.3433, validation loss: 0.1068
2024-11-14 22:09:03 [INFO]: Epoch 027 - training loss: 0.3375, validation loss: 0.0944
2024-11-14 22:09:03 [INFO]: Epoch 028 - training loss: 0.3394, validation loss: 0.1055
2024-11-14 22:09:03 [INFO]: Exceeded the training patience. Terminating the training procedure...
2024-11-14 22:09:03 [INFO]: Finished training. The best model is from epoch#18.
2024-11-14 22:09:03 [INFO]: Saved the model to results_point_rate01\SAITS_Pedestrian\round_0\20241114_T220851\SAITS.pypots
2024-11-14 22:09:03 [INFO]: Successfully saved to results_point_rate01\SAITS_Pedestrian\round_0\imputation.pkl
2024-11-14 22:09:03 [INFO]: Round0 - SAITS on Pedestrian: MAE=0.1608, MSE=0.2813, MRE=0.2115
2024-11-14 22:09:03 [INFO]: Have set the random seed as 2025 for numpy and pytorch.
2024-11-14 22:09:03 [INFO]: Using the given device: cuda
2024-11-14 22:09:03 [INFO]: Model files will be saved to results_point_rate01\SAITS_Pedestrian\round_1\20241114_T220903
2024-11-14 22:09:03 [INFO]: Tensorboard file will be saved to results_point_rate01\SAITS_Pedestrian\round_1\20241114_T220903\tensorboard
2024-11-14 22:09:03 [INFO]: SAITS initialized with the given hyperparameters, the number of trainable parameters: 133,406
2024-11-14 22:09:04 [INFO]: Epoch 001 - training loss: 1.1137, validation loss: 0.4771
2024-11-14 22:09:04 [INFO]: Epoch 002 - training loss: 0.8528, validation loss: 0.4415
2024-11-14 22:09:04 [INFO]: Epoch 003 - training loss: 0.7838, validation loss: 0.4162
2024-11-14 22:09:05 [INFO]: Epoch 004 - training loss: 0.7456, validation loss: 0.3885
2024-11-14 22:09:05 [INFO]: Epoch 005 - training loss: 0.7252, validation loss: 0.3411
2024-11-14 22:09:06 [INFO]: Epoch 006 - training loss: 0.6843, validation loss: 0.3621
2024-11-14 22:09:06 [INFO]: Epoch 007 - training loss: 0.6548, validation loss: 0.2608
2024-11-14 22:09:06 [INFO]: Epoch 008 - training loss: 0.6102, validation loss: 0.1907
2024-11-14 22:09:07 [INFO]: Epoch 009 - training loss: 0.5935, validation loss: 0.1722
2024-11-14 22:09:07 [INFO]: Epoch 010 - training loss: 0.5519, validation loss: 0.1612
2024-11-14 22:09:08 [INFO]: Epoch 011 - training loss: 0.5524, validation loss: 0.1217
2024-11-14 22:09:08 [INFO]: Epoch 012 - training loss: 0.5324, validation loss: 0.1256
2024-11-14 22:09:08 [INFO]: Epoch 013 - training loss: 0.5139, validation loss: 0.1209
2024-11-14 22:09:09 [INFO]: Epoch 014 - training loss: 0.5121, validation loss: 0.1276
2024-11-14 22:09:09 [INFO]: Epoch 015 - training loss: 0.5137, validation loss: 0.1169
2024-11-14 22:09:10 [INFO]: Epoch 016 - training loss: 0.5015, validation loss: 0.1151
2024-11-14 22:09:10 [INFO]: Epoch 017 - training loss: 0.5010, validation loss: 0.1233
2024-11-14 22:09:10 [INFO]: Epoch 018 - training loss: 0.5005, validation loss: 0.1191
2024-11-14 22:09:11 [INFO]: Epoch 019 - training loss: 0.4775, validation loss: 0.1163
2024-11-14 22:09:11 [INFO]: Epoch 020 - training loss: 0.4767, validation loss: 0.1052
2024-11-14 22:09:11 [INFO]: Epoch 021 - training loss: 0.4692, validation loss: 0.1042
2024-11-14 22:09:12 [INFO]: Epoch 022 - training loss: 0.4673, validation loss: 0.1083
2024-11-14 22:09:12 [INFO]: Epoch 023 - training loss: 0.4657, validation loss: 0.1034
2024-11-14 22:09:13 [INFO]: Epoch 024 - training loss: 0.4574, validation loss: 0.1141
2024-11-14 22:09:13 [INFO]: Epoch 025 - training loss: 0.4604, validation loss: 0.0952
2024-11-14 22:09:13 [INFO]: Epoch 026 - training loss: 0.4485, validation loss: 0.0864
2024-11-14 22:09:14 [INFO]: Epoch 027 - training loss: 0.4608, validation loss: 0.1080
2024-11-14 22:09:14 [INFO]: Epoch 028 - training loss: 0.4488, validation loss: 0.0929
2024-11-14 22:09:15 [INFO]: Epoch 029 - training loss: 0.4440, validation loss: 0.0897
2024-11-14 22:09:15 [INFO]: Epoch 030 - training loss: 0.4427, validation loss: 0.1057
2024-11-14 22:09:16 [INFO]: Epoch 031 - training loss: 0.4558, validation loss: 0.1171
2024-11-14 22:09:16 [INFO]: Epoch 032 - training loss: 0.4444, validation loss: 0.0924
2024-11-14 22:09:16 [INFO]: Epoch 033 - training loss: 0.4410, validation loss: 0.1009
2024-11-14 22:09:17 [INFO]: Epoch 034 - training loss: 0.4487, validation loss: 0.0909
2024-11-14 22:09:17 [INFO]: Epoch 035 - training loss: 0.4286, validation loss: 0.0972
2024-11-14 22:09:18 [INFO]: Epoch 036 - training loss: 0.4398, validation loss: 0.1192
2024-11-14 22:09:18 [INFO]: Exceeded the training patience. Terminating the training procedure...
2024-11-14 22:09:18 [INFO]: Finished training. The best model is from epoch#26.
2024-11-14 22:09:18 [INFO]: Saved the model to results_point_rate01\SAITS_Pedestrian\round_1\20241114_T220903\SAITS.pypots
2024-11-14 22:09:18 [INFO]: Successfully saved to results_point_rate01\SAITS_Pedestrian\round_1\imputation.pkl
2024-11-14 22:09:18 [INFO]: Round1 - SAITS on Pedestrian: MAE=0.1534, MSE=0.2650, MRE=0.2018
2024-11-14 22:09:18 [INFO]: Have set the random seed as 2026 for numpy and pytorch.
2024-11-14 22:09:18 [INFO]: Using the given device: cuda
2024-11-14 22:09:18 [INFO]: Model files will be saved to results_point_rate01\SAITS_Pedestrian\round_2\20241114_T220918
2024-11-14 22:09:18 [INFO]: Tensorboard file will be saved to results_point_rate01\SAITS_Pedestrian\round_2\20241114_T220918\tensorboard
2024-11-14 22:09:18 [INFO]: SAITS initialized with the given hyperparameters, the number of trainable parameters: 133,406
2024-11-14 22:09:18 [INFO]: Epoch 001 - training loss: 1.1313, validation loss: 0.5097
2024-11-14 22:09:19 [INFO]: Epoch 002 - training loss: 0.8756, validation loss: 0.4205
2024-11-14 22:09:19 [INFO]: Epoch 003 - training loss: 0.8118, validation loss: 0.3830
2024-11-14 22:09:20 [INFO]: Epoch 004 - training loss: 0.7785, validation loss: 0.3642
2024-11-14 22:09:20 [INFO]: Epoch 005 - training loss: 0.7500, validation loss: 0.3297
2024-11-14 22:09:20 [INFO]: Epoch 006 - training loss: 0.6919, validation loss: 0.2248
2024-11-14 22:09:21 [INFO]: Epoch 007 - training loss: 0.6365, validation loss: 0.1560
2024-11-14 22:09:21 [INFO]: Epoch 008 - training loss: 0.6011, validation loss: 0.1365
2024-11-14 22:09:22 [INFO]: Epoch 009 - training loss: 0.5962, validation loss: 0.1585
2024-11-14 22:09:22 [INFO]: Epoch 010 - training loss: 0.5825, validation loss: 0.1371
2024-11-14 22:09:22 [INFO]: Epoch 011 - training loss: 0.5549, validation loss: 0.1203
2024-11-14 22:09:23 [INFO]: Epoch 012 - training loss: 0.5468, validation loss: 0.1222
2024-11-14 22:09:23 [INFO]: Epoch 013 - training loss: 0.5420, validation loss: 0.1004
2024-11-14 22:09:24 [INFO]: Epoch 014 - training loss: 0.5367, validation loss: 0.1328
2024-11-14 22:09:24 [INFO]: Epoch 015 - training loss: 0.5274, validation loss: 0.1027
2024-11-14 22:09:24 [INFO]: Epoch 016 - training loss: 0.5139, validation loss: 0.0969
2024-11-14 22:09:25 [INFO]: Epoch 017 - training loss: 0.5195, validation loss: 0.1055
2024-11-14 22:09:25 [INFO]: Epoch 018 - training loss: 0.4938, validation loss: 0.1285
2024-11-14 22:09:26 [INFO]: Epoch 019 - training loss: 0.4992, validation loss: 0.1077
2024-11-14 22:09:26 [INFO]: Epoch 020 - training loss: 0.4945, validation loss: 0.1061
2024-11-14 22:09:26 [INFO]: Epoch 021 - training loss: 0.4878, validation loss: 0.1149
2024-11-14 22:09:27 [INFO]: Epoch 022 - training loss: 0.4812, validation loss: 0.1026
2024-11-14 22:09:27 [INFO]: Epoch 023 - training loss: 0.4781, validation loss: 0.1086
2024-11-14 22:09:28 [INFO]: Epoch 024 - training loss: 0.4751, validation loss: 0.1033
2024-11-14 22:09:28 [INFO]: Epoch 025 - training loss: 0.4679, validation loss: 0.1043
2024-11-14 22:09:28 [INFO]: Epoch 026 - training loss: 0.4592, validation loss: 0.1050
2024-11-14 22:09:28 [INFO]: Exceeded the training patience. Terminating the training procedure...
2024-11-14 22:09:28 [INFO]: Finished training. The best model is from epoch#16.
2024-11-14 22:09:28 [INFO]: Saved the model to results_point_rate01\SAITS_Pedestrian\round_2\20241114_T220918\SAITS.pypots
2024-11-14 22:09:29 [INFO]: Successfully saved to results_point_rate01\SAITS_Pedestrian\round_2\imputation.pkl
2024-11-14 22:09:29 [INFO]: Round2 - SAITS on Pedestrian: MAE=0.1584, MSE=0.2727, MRE=0.2083
2024-11-14 22:09:29 [INFO]: Have set the random seed as 2027 for numpy and pytorch.
2024-11-14 22:09:29 [INFO]: Using the given device: cuda
2024-11-14 22:09:29 [INFO]: Model files will be saved to results_point_rate01\SAITS_Pedestrian\round_3\20241114_T220929
2024-11-14 22:09:29 [INFO]: Tensorboard file will be saved to results_point_rate01\SAITS_Pedestrian\round_3\20241114_T220929\tensorboard
2024-11-14 22:09:29 [INFO]: SAITS initialized with the given hyperparameters, the number of trainable parameters: 133,406
2024-11-14 22:09:29 [INFO]: Epoch 001 - training loss: 1.0405, validation loss: 0.4817
2024-11-14 22:09:29 [INFO]: Epoch 002 - training loss: 0.7659, validation loss: 0.4489
2024-11-14 22:09:30 [INFO]: Epoch 003 - training loss: 0.7108, validation loss: 0.3808
2024-11-14 22:09:30 [INFO]: Epoch 004 - training loss: 0.6686, validation loss: 0.3705
2024-11-14 22:09:31 [INFO]: Epoch 005 - training loss: 0.6105, validation loss: 0.3284
2024-11-14 22:09:31 [INFO]: Epoch 006 - training loss: 0.5833, validation loss: 0.2640
2024-11-14 22:09:31 [INFO]: Epoch 007 - training loss: 0.5393, validation loss: 0.1805
2024-11-14 22:09:32 [INFO]: Epoch 008 - training loss: 0.4923, validation loss: 0.1193
2024-11-14 22:09:32 [INFO]: Epoch 009 - training loss: 0.4652, validation loss: 0.1443
2024-11-14 22:09:33 [INFO]: Epoch 010 - training loss: 0.4504, validation loss: 0.1247
2024-11-14 22:09:33 [INFO]: Epoch 011 - training loss: 0.4266, validation loss: 0.1432
2024-11-14 22:09:33 [INFO]: Epoch 012 - training loss: 0.4132, validation loss: 0.1142
2024-11-14 22:09:34 [INFO]: Epoch 013 - training loss: 0.3962, validation loss: 0.0897
2024-11-14 22:09:34 [INFO]: Epoch 014 - training loss: 0.3744, validation loss: 0.0998
2024-11-14 22:09:35 [INFO]: Epoch 015 - training loss: 0.3722, validation loss: 0.0867
2024-11-14 22:09:35 [INFO]: Epoch 016 - training loss: 0.3677, validation loss: 0.0953
2024-11-14 22:09:36 [INFO]: Epoch 017 - training loss: 0.3541, validation loss: 0.1060
2024-11-14 22:09:36 [INFO]: Epoch 018 - training loss: 0.3334, validation loss: 0.1011
2024-11-14 22:09:36 [INFO]: Epoch 019 - training loss: 0.3324, validation loss: 0.0867
2024-11-14 22:09:37 [INFO]: Epoch 020 - training loss: 0.3257, validation loss: 0.1094
2024-11-14 22:09:37 [INFO]: Epoch 021 - training loss: 0.3251, validation loss: 0.0910
2024-11-14 22:09:38 [INFO]: Epoch 022 - training loss: 0.3154, validation loss: 0.0866
2024-11-14 22:09:38 [INFO]: Epoch 023 - training loss: 0.3108, validation loss: 0.0851
2024-11-14 22:09:38 [INFO]: Epoch 024 - training loss: 0.3037, validation loss: 0.1162
2024-11-14 22:09:39 [INFO]: Epoch 025 - training loss: 0.2991, validation loss: 0.1120
2024-11-14 22:09:39 [INFO]: Epoch 026 - training loss: 0.2926, validation loss: 0.0789
2024-11-14 22:09:40 [INFO]: Epoch 027 - training loss: 0.2779, validation loss: 0.0797
2024-11-14 22:09:40 [INFO]: Epoch 028 - training loss: 0.2733, validation loss: 0.0691
2024-11-14 22:09:40 [INFO]: Epoch 029 - training loss: 0.2664, validation loss: 0.0818
2024-11-14 22:09:41 [INFO]: Epoch 030 - training loss: 0.2788, validation loss: 0.0911
2024-11-14 22:09:41 [INFO]: Epoch 031 - training loss: 0.2632, validation loss: 0.0711
2024-11-14 22:09:42 [INFO]: Epoch 032 - training loss: 0.2424, validation loss: 0.0785
2024-11-14 22:09:42 [INFO]: Epoch 033 - training loss: 0.2465, validation loss: 0.0676
2024-11-14 22:09:42 [INFO]: Epoch 034 - training loss: 0.2470, validation loss: 0.0809
2024-11-14 22:09:43 [INFO]: Epoch 035 - training loss: 0.2466, validation loss: 0.0904
2024-11-14 22:09:43 [INFO]: Epoch 036 - training loss: 0.2388, validation loss: 0.0708
2024-11-14 22:09:44 [INFO]: Epoch 037 - training loss: 0.2366, validation loss: 0.0711
2024-11-14 22:09:44 [INFO]: Epoch 038 - training loss: 0.2296, validation loss: 0.0799
2024-11-14 22:09:44 [INFO]: Epoch 039 - training loss: 0.2213, validation loss: 0.0749
2024-11-14 22:09:45 [INFO]: Epoch 040 - training loss: 0.2323, validation loss: 0.1113
2024-11-14 22:09:45 [INFO]: Epoch 041 - training loss: 0.2272, validation loss: 0.0783
2024-11-14 22:09:46 [INFO]: Epoch 042 - training loss: 0.2363, validation loss: 0.1013
2024-11-14 22:09:46 [INFO]: Epoch 043 - training loss: 0.2263, validation loss: 0.1027
2024-11-14 22:09:46 [INFO]: Exceeded the training patience. Terminating the training procedure...
2024-11-14 22:09:46 [INFO]: Finished training. The best model is from epoch#33.
2024-11-14 22:09:46 [INFO]: Saved the model to results_point_rate01\SAITS_Pedestrian\round_3\20241114_T220929\SAITS.pypots
2024-11-14 22:09:46 [INFO]: Successfully saved to results_point_rate01\SAITS_Pedestrian\round_3\imputation.pkl
2024-11-14 22:09:46 [INFO]: Round3 - SAITS on Pedestrian: MAE=0.1495, MSE=0.2506, MRE=0.1967
2024-11-14 22:09:46 [INFO]: Have set the random seed as 2028 for numpy and pytorch.
2024-11-14 22:09:46 [INFO]: Using the given device: cuda
2024-11-14 22:09:46 [INFO]: Model files will be saved to results_point_rate01\SAITS_Pedestrian\round_4\20241114_T220946
2024-11-14 22:09:46 [INFO]: Tensorboard file will be saved to results_point_rate01\SAITS_Pedestrian\round_4\20241114_T220946\tensorboard
2024-11-14 22:09:46 [INFO]: SAITS initialized with the given hyperparameters, the number of trainable parameters: 133,406
2024-11-14 22:09:47 [INFO]: Epoch 001 - training loss: 1.2582, validation loss: 0.5289
2024-11-14 22:09:47 [INFO]: Epoch 002 - training loss: 0.9909, validation loss: 0.3974
2024-11-14 22:09:48 [INFO]: Epoch 003 - training loss: 0.8922, validation loss: 0.4099
2024-11-14 22:09:48 [INFO]: Epoch 004 - training loss: 0.8623, validation loss: 0.3729
2024-11-14 22:09:48 [INFO]: Epoch 005 - training loss: 0.8254, validation loss: 0.3302
2024-11-14 22:09:49 [INFO]: Epoch 006 - training loss: 0.7813, validation loss: 0.2691
2024-11-14 22:09:49 [INFO]: Epoch 007 - training loss: 0.7269, validation loss: 0.1896
2024-11-14 22:09:50 [INFO]: Epoch 008 - training loss: 0.6968, validation loss: 0.1624
2024-11-14 22:09:50 [INFO]: Epoch 009 - training loss: 0.6589, validation loss: 0.1332
2024-11-14 22:09:51 [INFO]: Epoch 010 - training loss: 0.6570, validation loss: 0.1422
2024-11-14 22:09:51 [INFO]: Epoch 011 - training loss: 0.6256, validation loss: 0.1239
2024-11-14 22:09:51 [INFO]: Epoch 012 - training loss: 0.6103, validation loss: 0.1387
2024-11-14 22:09:52 [INFO]: Epoch 013 - training loss: 0.6052, validation loss: 0.1264
2024-11-14 22:09:52 [INFO]: Epoch 014 - training loss: 0.5851, validation loss: 0.1370
2024-11-14 22:09:53 [INFO]: Epoch 015 - training loss: 0.5736, validation loss: 0.1302
2024-11-14 22:09:53 [INFO]: Epoch 016 - training loss: 0.5629, validation loss: 0.1301
2024-11-14 22:09:53 [INFO]: Epoch 017 - training loss: 0.5669, validation loss: 0.1378
2024-11-14 22:09:54 [INFO]: Epoch 018 - training loss: 0.5471, validation loss: 0.1169
2024-11-14 22:09:54 [INFO]: Epoch 019 - training loss: 0.5382, validation loss: 0.1376
2024-11-14 22:09:54 [INFO]: Epoch 020 - training loss: 0.5327, validation loss: 0.1217
2024-11-14 22:09:55 [INFO]: Epoch 021 - training loss: 0.5388, validation loss: 0.1247
2024-11-14 22:09:55 [INFO]: Epoch 022 - training loss: 0.5225, validation loss: 0.1196
2024-11-14 22:09:56 [INFO]: Epoch 023 - training loss: 0.5161, validation loss: 0.1240
2024-11-14 22:09:56 [INFO]: Epoch 024 - training loss: 0.5093, validation loss: 0.1314
2024-11-14 22:09:56 [INFO]: Epoch 025 - training loss: 0.5026, validation loss: 0.1225
2024-11-14 22:09:57 [INFO]: Epoch 026 - training loss: 0.4912, validation loss: 0.1209
2024-11-14 22:09:57 [INFO]: Epoch 027 - training loss: 0.4957, validation loss: 0.1357
2024-11-14 22:09:58 [INFO]: Epoch 028 - training loss: 0.5036, validation loss: 0.1203
2024-11-14 22:09:58 [INFO]: Exceeded the training patience. Terminating the training procedure...
2024-11-14 22:09:58 [INFO]: Finished training. The best model is from epoch#18.
2024-11-14 22:09:58 [INFO]: Saved the model to results_point_rate01\SAITS_Pedestrian\round_4\20241114_T220946\SAITS.pypots
2024-11-14 22:09:58 [INFO]: Successfully saved to results_point_rate01\SAITS_Pedestrian\round_4\imputation.pkl
2024-11-14 22:09:58 [INFO]: Round4 - SAITS on Pedestrian: MAE=0.1655, MSE=0.2860, MRE=0.2177
2024-11-14 22:09:58 [INFO]: Done! Final results:
Averaged SAITS (133,406 params) on Pedestrian: MAE=0.1575 ± 0.005595476758009926, MSE=0.2711 ± 0.01254898759376523, MRE=0.2072 ± 0.007360621230633985, average inference time=0.26

The log of Ubuntu+4090:

2024-11-14 22:27:40 [INFO]: Have set the random seed as 2024 for numpy and pytorch.
2024-11-14 22:27:40 [INFO]: Using the given device: cuda:0
2024-11-14 22:27:40 [INFO]: Model files will be saved to results_point_rate01/SAITS_Pedestrian/round_0/20241114_T222740
2024-11-14 22:27:40 [INFO]: Tensorboard file will be saved to results_point_rate01/SAITS_Pedestrian/round_0/20241114_T222740/tensorboard
2024-11-14 22:27:40 [INFO]: SAITS initialized with the given hyperparameters, the number of trainable parameters: 133,406
2024-11-14 22:27:42 [INFO]: Epoch 001 - training loss: 0.9746, validation loss: 0.4494
2024-11-14 22:27:43 [INFO]: Epoch 002 - training loss: 0.7927, validation loss: 0.3881
2024-11-14 22:27:45 [INFO]: Epoch 003 - training loss: 0.7320, validation loss: 0.3801
2024-11-14 22:27:46 [INFO]: Epoch 004 - training loss: 0.7122, validation loss: 0.3573
2024-11-14 22:27:47 [INFO]: Epoch 005 - training loss: 0.6889, validation loss: 0.3576
2024-11-14 22:27:48 [INFO]: Epoch 006 - training loss: 0.6573, validation loss: 0.3012
2024-11-14 22:27:49 [INFO]: Epoch 007 - training loss: 0.6426, validation loss: 0.2902
2024-11-14 22:27:50 [INFO]: Epoch 008 - training loss: 0.6139, validation loss: 0.2269
2024-11-14 22:27:50 [INFO]: Epoch 009 - training loss: 0.5844, validation loss: 0.1805
2024-11-14 22:27:51 [INFO]: Epoch 010 - training loss: 0.5773, validation loss: 0.1390
2024-11-14 22:27:51 [INFO]: Epoch 011 - training loss: 0.5542, validation loss: 0.1458
2024-11-14 22:27:52 [INFO]: Epoch 012 - training loss: 0.5419, validation loss: 0.1526
2024-11-14 22:27:52 [INFO]: Epoch 013 - training loss: 0.5274, validation loss: 0.1465
2024-11-14 22:27:53 [INFO]: Epoch 014 - training loss: 0.5341, validation loss: 0.1669
2024-11-14 22:27:53 [INFO]: Epoch 015 - training loss: 0.5231, validation loss: 0.1341
2024-11-14 22:27:54 [INFO]: Epoch 016 - training loss: 0.5103, validation loss: 0.1435
2024-11-14 22:27:56 [INFO]: Epoch 017 - training loss: 0.5106, validation loss: 0.1123
2024-11-14 22:27:57 [INFO]: Epoch 018 - training loss: 0.4941, validation loss: 0.1110
2024-11-14 22:27:58 [INFO]: Epoch 019 - training loss: 0.4909, validation loss: 0.1229
2024-11-14 22:27:59 [INFO]: Epoch 020 - training loss: 0.4853, validation loss: 0.1194
2024-11-14 22:28:01 [INFO]: Epoch 021 - training loss: 0.4914, validation loss: 0.1172
2024-11-14 22:28:02 [INFO]: Epoch 022 - training loss: 0.4512, validation loss: 0.1368
2024-11-14 22:28:03 [INFO]: Epoch 023 - training loss: 0.4095, validation loss: 0.1150
2024-11-14 22:28:04 [INFO]: Epoch 024 - training loss: 0.4133, validation loss: 0.1143
2024-11-14 22:28:06 [INFO]: Epoch 025 - training loss: 0.3965, validation loss: 0.1154
2024-11-14 22:28:07 [INFO]: Epoch 026 - training loss: 0.3733, validation loss: 0.1051
2024-11-14 22:28:08 [INFO]: Epoch 027 - training loss: 0.3706, validation loss: 0.0906
2024-11-14 22:28:09 [INFO]: Epoch 028 - training loss: 0.3696, validation loss: 0.1023
2024-11-14 22:28:11 [INFO]: Epoch 029 - training loss: 0.3686, validation loss: 0.1050
2024-11-14 22:28:12 [INFO]: Epoch 030 - training loss: 0.3699, validation loss: 0.0856
2024-11-14 22:28:13 [INFO]: Epoch 031 - training loss: 0.3503, validation loss: 0.0874
2024-11-14 22:28:14 [INFO]: Epoch 032 - training loss: 0.3515, validation loss: 0.0932
2024-11-14 22:28:16 [INFO]: Epoch 033 - training loss: 0.3471, validation loss: 0.0891
2024-11-14 22:28:17 [INFO]: Epoch 034 - training loss: 0.3324, validation loss: 0.0826
2024-11-14 22:28:18 [INFO]: Epoch 035 - training loss: 0.3267, validation loss: 0.0971
2024-11-14 22:28:20 [INFO]: Epoch 036 - training loss: 0.3473, validation loss: 0.0978
2024-11-14 22:28:21 [INFO]: Epoch 037 - training loss: 0.3372, validation loss: 0.0904
2024-11-14 22:28:22 [INFO]: Epoch 038 - training loss: 0.3216, validation loss: 0.0964
2024-11-14 22:28:23 [INFO]: Epoch 039 - training loss: 0.3279, validation loss: 0.1146
2024-11-14 22:28:25 [INFO]: Epoch 040 - training loss: 0.3278, validation loss: 0.0881
2024-11-14 22:28:26 [INFO]: Epoch 041 - training loss: 0.3161, validation loss: 0.0784
2024-11-14 22:28:27 [INFO]: Epoch 042 - training loss: 0.3116, validation loss: 0.0930
2024-11-14 22:28:28 [INFO]: Epoch 043 - training loss: 0.3093, validation loss: 0.0802
2024-11-14 22:28:30 [INFO]: Epoch 044 - training loss: 0.3065, validation loss: 0.0798
2024-11-14 22:28:31 [INFO]: Epoch 045 - training loss: 0.3035, validation loss: 0.0855
2024-11-14 22:28:32 [INFO]: Epoch 046 - training loss: 0.2983, validation loss: 0.0923
2024-11-14 22:28:33 [INFO]: Epoch 047 - training loss: 0.2998, validation loss: 0.0928
2024-11-14 22:28:34 [INFO]: Epoch 048 - training loss: 0.3025, validation loss: 0.0876
2024-11-14 22:28:35 [INFO]: Epoch 049 - training loss: 0.2946, validation loss: 0.0776
2024-11-14 22:28:36 [INFO]: Epoch 050 - training loss: 0.2895, validation loss: 0.0956
2024-11-14 22:28:37 [INFO]: Epoch 051 - training loss: 0.2963, validation loss: 0.0981
2024-11-14 22:28:39 [INFO]: Epoch 052 - training loss: 0.2975, validation loss: 0.1096
2024-11-14 22:28:40 [INFO]: Epoch 053 - training loss: 0.2891, validation loss: 0.0915
2024-11-14 22:28:41 [INFO]: Epoch 054 - training loss: 0.2887, validation loss: 0.0966
2024-11-14 22:28:43 [INFO]: Epoch 055 - training loss: 0.2935, validation loss: 0.0811
2024-11-14 22:28:44 [INFO]: Epoch 056 - training loss: 0.2824, validation loss: 0.0688
2024-11-14 22:28:45 [INFO]: Epoch 057 - training loss: 0.2857, validation loss: 0.0700
2024-11-14 22:28:46 [INFO]: Epoch 058 - training loss: 0.2725, validation loss: 0.0790
2024-11-14 22:28:48 [INFO]: Epoch 059 - training loss: 0.2731, validation loss: 0.0856
2024-11-14 22:28:49 [INFO]: Epoch 060 - training loss: 0.2719, validation loss: 0.0708
2024-11-14 22:28:50 [INFO]: Epoch 061 - training loss: 0.2755, validation loss: 0.0937
2024-11-14 22:28:51 [INFO]: Epoch 062 - training loss: 0.2736, validation loss: 0.0790
2024-11-14 22:28:53 [INFO]: Epoch 063 - training loss: 0.2608, validation loss: 0.0860
2024-11-14 22:28:54 [INFO]: Epoch 064 - training loss: 0.2646, validation loss: 0.0930
2024-11-14 22:28:55 [INFO]: Epoch 065 - training loss: 0.2653, validation loss: 0.0970
2024-11-14 22:28:56 [INFO]: Epoch 066 - training loss: 0.2700, validation loss: 0.0865
2024-11-14 22:28:56 [INFO]: Exceeded the training patience. Terminating the training procedure...
2024-11-14 22:28:56 [INFO]: Finished training. The best model is from epoch#56.
2024-11-14 22:28:56 [INFO]: Saved the model to results_point_rate01/SAITS_Pedestrian/round_0/20241114_T222740/SAITS.pypots
2024-11-14 22:28:57 [INFO]: Successfully saved to results_point_rate01/SAITS_Pedestrian/round_0/imputation.pkl
2024-11-14 22:28:57 [INFO]: Round0 - SAITS on Pedestrian: MAE=0.1484, MSE=0.2596, MRE=0.1953
2024-11-14 22:28:57 [INFO]: Have set the random seed as 2025 for numpy and pytorch.
2024-11-14 22:28:57 [INFO]: Using the given device: cuda:0
2024-11-14 22:28:57 [INFO]: Model files will be saved to results_point_rate01/SAITS_Pedestrian/round_1/20241114_T222857
2024-11-14 22:28:57 [INFO]: Tensorboard file will be saved to results_point_rate01/SAITS_Pedestrian/round_1/20241114_T222857/tensorboard
2024-11-14 22:28:57 [INFO]: SAITS initialized with the given hyperparameters, the number of trainable parameters: 133,406
2024-11-14 22:28:58 [INFO]: Epoch 001 - training loss: 1.1137, validation loss: 0.4771
2024-11-14 22:28:59 [INFO]: Epoch 002 - training loss: 0.8527, validation loss: 0.4427
2024-11-14 22:29:01 [INFO]: Epoch 003 - training loss: 0.7844, validation loss: 0.4175
2024-11-14 22:29:02 [INFO]: Epoch 004 - training loss: 0.7469, validation loss: 0.3927
2024-11-14 22:29:03 [INFO]: Epoch 005 - training loss: 0.7227, validation loss: 0.3354
2024-11-14 22:29:05 [INFO]: Epoch 006 - training loss: 0.6805, validation loss: 0.3656
2024-11-14 22:29:06 [INFO]: Epoch 007 - training loss: 0.6556, validation loss: 0.2551
2024-11-14 22:29:07 [INFO]: Epoch 008 - training loss: 0.6106, validation loss: 0.1965
2024-11-14 22:29:09 [INFO]: Epoch 009 - training loss: 0.5970, validation loss: 0.1784
2024-11-14 22:29:10 [INFO]: Epoch 010 - training loss: 0.5471, validation loss: 0.1668
2024-11-14 22:29:11 [INFO]: Epoch 011 - training loss: 0.5538, validation loss: 0.1254
2024-11-14 22:29:13 [INFO]: Epoch 012 - training loss: 0.5304, validation loss: 0.1156
2024-11-14 22:29:14 [INFO]: Epoch 013 - training loss: 0.5146, validation loss: 0.1263
2024-11-14 22:29:15 [INFO]: Epoch 014 - training loss: 0.5201, validation loss: 0.1256
2024-11-14 22:29:16 [INFO]: Epoch 015 - training loss: 0.5130, validation loss: 0.1097
2024-11-14 22:29:18 [INFO]: Epoch 016 - training loss: 0.5019, validation loss: 0.1083
2024-11-14 22:29:19 [INFO]: Epoch 017 - training loss: 0.4871, validation loss: 0.1397
2024-11-14 22:29:20 [INFO]: Epoch 018 - training loss: 0.4892, validation loss: 0.1209
2024-11-14 22:29:21 [INFO]: Epoch 019 - training loss: 0.4769, validation loss: 0.1201
2024-11-14 22:29:23 [INFO]: Epoch 020 - training loss: 0.4779, validation loss: 0.0960
2024-11-14 22:29:24 [INFO]: Epoch 021 - training loss: 0.4677, validation loss: 0.1009
2024-11-14 22:29:25 [INFO]: Epoch 022 - training loss: 0.4615, validation loss: 0.1074
2024-11-14 22:29:26 [INFO]: Epoch 023 - training loss: 0.4623, validation loss: 0.0992
2024-11-14 22:29:28 [INFO]: Epoch 024 - training loss: 0.4532, validation loss: 0.1015
2024-11-14 22:29:29 [INFO]: Epoch 025 - training loss: 0.4602, validation loss: 0.1172
2024-11-14 22:29:30 [INFO]: Epoch 026 - training loss: 0.4571, validation loss: 0.0888
2024-11-14 22:29:31 [INFO]: Epoch 027 - training loss: 0.4611, validation loss: 0.0994
2024-11-14 22:29:33 [INFO]: Epoch 028 - training loss: 0.4493, validation loss: 0.0912
2024-11-14 22:29:34 [INFO]: Epoch 029 - training loss: 0.4427, validation loss: 0.0803
2024-11-14 22:29:35 [INFO]: Epoch 030 - training loss: 0.4440, validation loss: 0.0991
2024-11-14 22:29:37 [INFO]: Epoch 031 - training loss: 0.4481, validation loss: 0.0900
2024-11-14 22:29:38 [INFO]: Epoch 032 - training loss: 0.4355, validation loss: 0.1041
2024-11-14 22:29:39 [INFO]: Epoch 033 - training loss: 0.4408, validation loss: 0.0885
2024-11-14 22:29:40 [INFO]: Epoch 034 - training loss: 0.4456, validation loss: 0.0887
2024-11-14 22:29:42 [INFO]: Epoch 035 - training loss: 0.4311, validation loss: 0.0844
2024-11-14 22:29:43 [INFO]: Epoch 036 - training loss: 0.4407, validation loss: 0.1170
2024-11-14 22:29:43 [INFO]: Epoch 037 - training loss: 0.4366, validation loss: 0.1038
2024-11-14 22:29:44 [INFO]: Epoch 038 - training loss: 0.4260, validation loss: 0.0890
2024-11-14 22:29:44 [INFO]: Epoch 039 - training loss: 0.4401, validation loss: 0.0895
2024-11-14 22:29:44 [INFO]: Exceeded the training patience. Terminating the training procedure...
2024-11-14 22:29:44 [INFO]: Finished training. The best model is from epoch#29.
2024-11-14 22:29:44 [INFO]: Saved the model to results_point_rate01/SAITS_Pedestrian/round_1/20241114_T222857/SAITS.pypots
2024-11-14 22:29:45 [INFO]: Successfully saved to results_point_rate01/SAITS_Pedestrian/round_1/imputation.pkl
2024-11-14 22:29:45 [INFO]: Round1 - SAITS on Pedestrian: MAE=0.1478, MSE=0.2576, MRE=0.1944
2024-11-14 22:29:45 [INFO]: Have set the random seed as 2026 for numpy and pytorch.
2024-11-14 22:29:45 [INFO]: Using the given device: cuda:0
2024-11-14 22:29:45 [INFO]: Model files will be saved to results_point_rate01/SAITS_Pedestrian/round_2/20241114_T222945
2024-11-14 22:29:45 [INFO]: Tensorboard file will be saved to results_point_rate01/SAITS_Pedestrian/round_2/20241114_T222945/tensorboard
2024-11-14 22:29:45 [INFO]: SAITS initialized with the given hyperparameters, the number of trainable parameters: 133,406
2024-11-14 22:29:45 [INFO]: Epoch 001 - training loss: 1.1313, validation loss: 0.5097
2024-11-14 22:29:46 [INFO]: Epoch 002 - training loss: 0.8756, validation loss: 0.4204
2024-11-14 22:29:46 [INFO]: Epoch 003 - training loss: 0.8102, validation loss: 0.3814
2024-11-14 22:29:47 [INFO]: Epoch 004 - training loss: 0.7791, validation loss: 0.3629
2024-11-14 22:29:48 [INFO]: Epoch 005 - training loss: 0.7527, validation loss: 0.3045
2024-11-14 22:29:48 [INFO]: Epoch 006 - training loss: 0.6845, validation loss: 0.2157
2024-11-14 22:29:49 [INFO]: Epoch 007 - training loss: 0.6363, validation loss: 0.1515
2024-11-14 22:29:49 [INFO]: Epoch 008 - training loss: 0.5988, validation loss: 0.1362
2024-11-14 22:29:50 [INFO]: Epoch 009 - training loss: 0.5917, validation loss: 0.1391
2024-11-14 22:29:51 [INFO]: Epoch 010 - training loss: 0.5721, validation loss: 0.1251
2024-11-14 22:29:52 [INFO]: Epoch 011 - training loss: 0.5592, validation loss: 0.1262
2024-11-14 22:29:54 [INFO]: Epoch 012 - training loss: 0.5478, validation loss: 0.1170
2024-11-14 22:29:55 [INFO]: Epoch 013 - training loss: 0.5376, validation loss: 0.1138
2024-11-14 22:29:56 [INFO]: Epoch 014 - training loss: 0.5318, validation loss: 0.1320
2024-11-14 22:29:57 [INFO]: Epoch 015 - training loss: 0.5292, validation loss: 0.1122
2024-11-14 22:29:59 [INFO]: Epoch 016 - training loss: 0.5138, validation loss: 0.0952
2024-11-14 22:30:00 [INFO]: Epoch 017 - training loss: 0.5239, validation loss: 0.1000
2024-11-14 22:30:01 [INFO]: Epoch 018 - training loss: 0.4922, validation loss: 0.1271
2024-11-14 22:30:02 [INFO]: Epoch 019 - training loss: 0.5032, validation loss: 0.0945
2024-11-14 22:30:04 [INFO]: Epoch 020 - training loss: 0.4984, validation loss: 0.0935
2024-11-14 22:30:05 [INFO]: Epoch 021 - training loss: 0.4861, validation loss: 0.1075
2024-11-14 22:30:06 [INFO]: Epoch 022 - training loss: 0.4843, validation loss: 0.1064
2024-11-14 22:30:08 [INFO]: Epoch 023 - training loss: 0.4778, validation loss: 0.1124
2024-11-14 22:30:09 [INFO]: Epoch 024 - training loss: 0.4756, validation loss: 0.1065
2024-11-14 22:30:10 [INFO]: Epoch 025 - training loss: 0.4739, validation loss: 0.1222
2024-11-14 22:30:11 [INFO]: Epoch 026 - training loss: 0.4768, validation loss: 0.1173
2024-11-14 22:30:13 [INFO]: Epoch 027 - training loss: 0.4636, validation loss: 0.1252
2024-11-14 22:30:14 [INFO]: Epoch 028 - training loss: 0.4659, validation loss: 0.1115
2024-11-14 22:30:15 [INFO]: Epoch 029 - training loss: 0.4688, validation loss: 0.1195
2024-11-14 22:30:16 [INFO]: Epoch 030 - training loss: 0.4552, validation loss: 0.1116
2024-11-14 22:30:16 [INFO]: Exceeded the training patience. Terminating the training procedure...
2024-11-14 22:30:16 [INFO]: Finished training. The best model is from epoch#20.
2024-11-14 22:30:16 [INFO]: Saved the model to results_point_rate01/SAITS_Pedestrian/round_2/20241114_T222945/SAITS.pypots
2024-11-14 22:30:17 [INFO]: Successfully saved to results_point_rate01/SAITS_Pedestrian/round_2/imputation.pkl
2024-11-14 22:30:17 [INFO]: Round2 - SAITS on Pedestrian: MAE=0.1609, MSE=0.3082, MRE=0.2116
2024-11-14 22:30:17 [INFO]: Have set the random seed as 2027 for numpy and pytorch.
2024-11-14 22:30:17 [INFO]: Using the given device: cuda:0
2024-11-14 22:30:17 [INFO]: Model files will be saved to results_point_rate01/SAITS_Pedestrian/round_3/20241114_T223017
2024-11-14 22:30:17 [INFO]: Tensorboard file will be saved to results_point_rate01/SAITS_Pedestrian/round_3/20241114_T223017/tensorboard
2024-11-14 22:30:17 [INFO]: SAITS initialized with the given hyperparameters, the number of trainable parameters: 133,406
2024-11-14 22:30:18 [INFO]: Epoch 001 - training loss: 1.0405, validation loss: 0.4817
2024-11-14 22:30:19 [INFO]: Epoch 002 - training loss: 0.7659, validation loss: 0.4489
2024-11-14 22:30:21 [INFO]: Epoch 003 - training loss: 0.7108, validation loss: 0.3804
2024-11-14 22:30:22 [INFO]: Epoch 004 - training loss: 0.6738, validation loss: 0.3522
2024-11-14 22:30:23 [INFO]: Epoch 005 - training loss: 0.6146, validation loss: 0.3268
2024-11-14 22:30:24 [INFO]: Epoch 006 - training loss: 0.5836, validation loss: 0.2712
2024-11-14 22:30:26 [INFO]: Epoch 007 - training loss: 0.5440, validation loss: 0.1800
2024-11-14 22:30:27 [INFO]: Epoch 008 - training loss: 0.4889, validation loss: 0.1160
2024-11-14 22:30:28 [INFO]: Epoch 009 - training loss: 0.4625, validation loss: 0.1624
2024-11-14 22:30:30 [INFO]: Epoch 010 - training loss: 0.4567, validation loss: 0.1233
2024-11-14 22:30:31 [INFO]: Epoch 011 - training loss: 0.4240, validation loss: 0.1447
2024-11-14 22:30:32 [INFO]: Epoch 012 - training loss: 0.4223, validation loss: 0.1158
2024-11-14 22:30:34 [INFO]: Epoch 013 - training loss: 0.4047, validation loss: 0.1049
2024-11-14 22:30:35 [INFO]: Epoch 014 - training loss: 0.3875, validation loss: 0.1036
2024-11-14 22:30:36 [INFO]: Epoch 015 - training loss: 0.3752, validation loss: 0.0910
2024-11-14 22:30:37 [INFO]: Epoch 016 - training loss: 0.3688, validation loss: 0.1226
2024-11-14 22:30:39 [INFO]: Epoch 017 - training loss: 0.3551, validation loss: 0.1103
2024-11-14 22:30:40 [INFO]: Epoch 018 - training loss: 0.3366, validation loss: 0.1148
2024-11-14 22:30:41 [INFO]: Epoch 019 - training loss: 0.3297, validation loss: 0.0958
2024-11-14 22:30:42 [INFO]: Epoch 020 - training loss: 0.3246, validation loss: 0.1097
2024-11-14 22:30:44 [INFO]: Epoch 021 - training loss: 0.3303, validation loss: 0.1158
2024-11-14 22:30:45 [INFO]: Epoch 022 - training loss: 0.3174, validation loss: 0.0914
2024-11-14 22:30:46 [INFO]: Epoch 023 - training loss: 0.3127, validation loss: 0.0992
2024-11-14 22:30:47 [INFO]: Epoch 024 - training loss: 0.3005, validation loss: 0.1006
2024-11-14 22:30:49 [INFO]: Epoch 025 - training loss: 0.2914, validation loss: 0.1009
2024-11-14 22:30:49 [INFO]: Exceeded the training patience. Terminating the training procedure...
2024-11-14 22:30:49 [INFO]: Finished training. The best model is from epoch#15.
2024-11-14 22:30:49 [INFO]: Saved the model to results_point_rate01/SAITS_Pedestrian/round_3/20241114_T223017/SAITS.pypots
2024-11-14 22:30:49 [INFO]: Successfully saved to results_point_rate01/SAITS_Pedestrian/round_3/imputation.pkl
2024-11-14 22:30:49 [INFO]: Round3 - SAITS on Pedestrian: MAE=0.1569, MSE=0.2682, MRE=0.2064
2024-11-14 22:30:49 [INFO]: Have set the random seed as 2028 for numpy and pytorch.
2024-11-14 22:30:49 [INFO]: Using the given device: cuda:0
2024-11-14 22:30:49 [INFO]: Model files will be saved to results_point_rate01/SAITS_Pedestrian/round_4/20241114_T223049
2024-11-14 22:30:49 [INFO]: Tensorboard file will be saved to results_point_rate01/SAITS_Pedestrian/round_4/20241114_T223049/tensorboard
2024-11-14 22:30:49 [INFO]: SAITS initialized with the given hyperparameters, the number of trainable parameters: 133,406
2024-11-14 22:30:51 [INFO]: Epoch 001 - training loss: 1.2582, validation loss: 0.5289
2024-11-14 22:30:52 [INFO]: Epoch 002 - training loss: 0.9909, validation loss: 0.3974
2024-11-14 22:30:53 [INFO]: Epoch 003 - training loss: 0.8920, validation loss: 0.3976
2024-11-14 22:30:54 [INFO]: Epoch 004 - training loss: 0.8618, validation loss: 0.3692
2024-11-14 22:30:55 [INFO]: Epoch 005 - training loss: 0.8244, validation loss: 0.3288
2024-11-14 22:30:56 [INFO]: Epoch 006 - training loss: 0.7807, validation loss: 0.2737
2024-11-14 22:30:56 [INFO]: Epoch 007 - training loss: 0.7263, validation loss: 0.1845
2024-11-14 22:30:57 [INFO]: Epoch 008 - training loss: 0.6963, validation loss: 0.1589
2024-11-14 22:30:58 [INFO]: Epoch 009 - training loss: 0.6537, validation loss: 0.1337
2024-11-14 22:30:59 [INFO]: Epoch 010 - training loss: 0.6578, validation loss: 0.1427
2024-11-14 22:31:00 [INFO]: Epoch 011 - training loss: 0.6265, validation loss: 0.1339
2024-11-14 22:31:02 [INFO]: Epoch 012 - training loss: 0.6100, validation loss: 0.1455
2024-11-14 22:31:03 [INFO]: Epoch 013 - training loss: 0.6031, validation loss: 0.1231
2024-11-14 22:31:04 [INFO]: Epoch 014 - training loss: 0.5867, validation loss: 0.1364
2024-11-14 22:31:05 [INFO]: Epoch 015 - training loss: 0.5829, validation loss: 0.1330
2024-11-14 22:31:06 [INFO]: Epoch 016 - training loss: 0.5656, validation loss: 0.1224
2024-11-14 22:31:07 [INFO]: Epoch 017 - training loss: 0.5623, validation loss: 0.1526
2024-11-14 22:31:08 [INFO]: Epoch 018 - training loss: 0.5532, validation loss: 0.1158
2024-11-14 22:31:10 [INFO]: Epoch 019 - training loss: 0.5403, validation loss: 0.1318
2024-11-14 22:31:11 [INFO]: Epoch 020 - training loss: 0.5317, validation loss: 0.1209
2024-11-14 22:31:12 [INFO]: Epoch 021 - training loss: 0.5472, validation loss: 0.1268
2024-11-14 22:31:14 [INFO]: Epoch 022 - training loss: 0.5247, validation loss: 0.1152
2024-11-14 22:31:15 [INFO]: Epoch 023 - training loss: 0.5136, validation loss: 0.1260
2024-11-14 22:31:16 [INFO]: Epoch 024 - training loss: 0.5108, validation loss: 0.1288
2024-11-14 22:31:17 [INFO]: Epoch 025 - training loss: 0.5023, validation loss: 0.1155
2024-11-14 22:31:19 [INFO]: Epoch 026 - training loss: 0.4929, validation loss: 0.1247
2024-11-14 22:31:20 [INFO]: Epoch 027 - training loss: 0.4990, validation loss: 0.1315
2024-11-14 22:31:21 [INFO]: Epoch 028 - training loss: 0.5089, validation loss: 0.1196
2024-11-14 22:31:23 [INFO]: Epoch 029 - training loss: 0.4939, validation loss: 0.1217
2024-11-14 22:31:24 [INFO]: Epoch 030 - training loss: 0.4704, validation loss: 0.1143
2024-11-14 22:31:25 [INFO]: Epoch 031 - training loss: 0.4685, validation loss: 0.1002
2024-11-14 22:31:26 [INFO]: Epoch 032 - training loss: 0.4805, validation loss: 0.1198
2024-11-14 22:31:28 [INFO]: Epoch 033 - training loss: 0.4669, validation loss: 0.1173
2024-11-14 22:31:29 [INFO]: Epoch 034 - training loss: 0.4686, validation loss: 0.0917
2024-11-14 22:31:30 [INFO]: Epoch 035 - training loss: 0.4637, validation loss: 0.1003
2024-11-14 22:31:31 [INFO]: Epoch 036 - training loss: 0.4707, validation loss: 0.1083
2024-11-14 22:31:32 [INFO]: Epoch 037 - training loss: 0.4477, validation loss: 0.1064
2024-11-14 22:31:33 [INFO]: Epoch 038 - training loss: 0.4564, validation loss: 0.0986
2024-11-14 22:31:34 [INFO]: Epoch 039 - training loss: 0.4533, validation loss: 0.0982
2024-11-14 22:31:34 [INFO]: Epoch 040 - training loss: 0.4445, validation loss: 0.1022
2024-11-14 22:31:35 [INFO]: Epoch 041 - training loss: 0.4467, validation loss: 0.0955
2024-11-14 22:31:35 [INFO]: Epoch 042 - training loss: 0.4469, validation loss: 0.0872
2024-11-14 22:31:36 [INFO]: Epoch 043 - training loss: 0.4578, validation loss: 0.1033
2024-11-14 22:31:36 [INFO]: Epoch 044 - training loss: 0.4451, validation loss: 0.0803
2024-11-14 22:31:37 [INFO]: Epoch 045 - training loss: 0.4395, validation loss: 0.0874
2024-11-14 22:31:38 [INFO]: Epoch 046 - training loss: 0.4319, validation loss: 0.1011
2024-11-14 22:31:39 [INFO]: Epoch 047 - training loss: 0.4338, validation loss: 0.1047
2024-11-14 22:31:40 [INFO]: Epoch 048 - training loss: 0.4323, validation loss: 0.0866
2024-11-14 22:31:41 [INFO]: Epoch 049 - training loss: 0.4380, validation loss: 0.0841
2024-11-14 22:31:43 [INFO]: Epoch 050 - training loss: 0.4362, validation loss: 0.0913
2024-11-14 22:31:44 [INFO]: Epoch 051 - training loss: 0.4401, validation loss: 0.0945
2024-11-14 22:31:45 [INFO]: Epoch 052 - training loss: 0.4312, validation loss: 0.0777
2024-11-14 22:31:46 [INFO]: Epoch 053 - training loss: 0.4231, validation loss: 0.1103
2024-11-14 22:31:48 [INFO]: Epoch 054 - training loss: 0.4372, validation loss: 0.0901
2024-11-14 22:31:49 [INFO]: Epoch 055 - training loss: 0.4280, validation loss: 0.0840
2024-11-14 22:31:50 [INFO]: Epoch 056 - training loss: 0.4306, validation loss: 0.0828
2024-11-14 22:31:52 [INFO]: Epoch 057 - training loss: 0.4216, validation loss: 0.0857
2024-11-14 22:31:53 [INFO]: Epoch 058 - training loss: 0.4209, validation loss: 0.0914
2024-11-14 22:31:54 [INFO]: Epoch 059 - training loss: 0.4320, validation loss: 0.0976
2024-11-14 22:31:55 [INFO]: Epoch 060 - training loss: 0.4266, validation loss: 0.0808
2024-11-14 22:31:57 [INFO]: Epoch 061 - training loss: 0.4171, validation loss: 0.0790
2024-11-14 22:31:58 [INFO]: Epoch 062 - training loss: 0.4138, validation loss: 0.0764
2024-11-14 22:31:59 [INFO]: Epoch 063 - training loss: 0.4192, validation loss: 0.0774
2024-11-14 22:32:00 [INFO]: Epoch 064 - training loss: 0.4130, validation loss: 0.0772
2024-11-14 22:32:02 [INFO]: Epoch 065 - training loss: 0.4244, validation loss: 0.0921
2024-11-14 22:32:03 [INFO]: Epoch 066 - training loss: 0.4287, validation loss: 0.0722
2024-11-14 22:32:04 [INFO]: Epoch 067 - training loss: 0.4156, validation loss: 0.0846
2024-11-14 22:32:05 [INFO]: Epoch 068 - training loss: 0.4111, validation loss: 0.0786
2024-11-14 22:32:06 [INFO]: Epoch 069 - training loss: 0.4196, validation loss: 0.0815
2024-11-14 22:32:08 [INFO]: Epoch 070 - training loss: 0.4151, validation loss: 0.0834
2024-11-14 22:32:09 [INFO]: Epoch 071 - training loss: 0.4129, validation loss: 0.0845
2024-11-14 22:32:10 [INFO]: Epoch 072 - training loss: 0.4122, validation loss: 0.0946
2024-11-14 22:32:11 [INFO]: Epoch 073 - training loss: 0.4146, validation loss: 0.0736
2024-11-14 22:32:13 [INFO]: Epoch 074 - training loss: 0.4040, validation loss: 0.0760
2024-11-14 22:32:14 [INFO]: Epoch 075 - training loss: 0.4143, validation loss: 0.0698
2024-11-14 22:32:15 [INFO]: Epoch 076 - training loss: 0.4121, validation loss: 0.0854
2024-11-14 22:32:17 [INFO]: Epoch 077 - training loss: 0.4088, validation loss: 0.0901
2024-11-14 22:32:18 [INFO]: Epoch 078 - training loss: 0.4089, validation loss: 0.0687
2024-11-14 22:32:19 [INFO]: Epoch 079 - training loss: 0.4182, validation loss: 0.0795
2024-11-14 22:32:20 [INFO]: Epoch 080 - training loss: 0.4021, validation loss: 0.0711
2024-11-14 22:32:22 [INFO]: Epoch 081 - training loss: 0.4081, validation loss: 0.0729
2024-11-14 22:32:23 [INFO]: Epoch 082 - training loss: 0.4092, validation loss: 0.0715
2024-11-14 22:32:24 [INFO]: Epoch 083 - training loss: 0.4112, validation loss: 0.0720
2024-11-14 22:32:25 [INFO]: Epoch 084 - training loss: 0.4036, validation loss: 0.0828
2024-11-14 22:32:27 [INFO]: Epoch 085 - training loss: 0.4169, validation loss: 0.0743
2024-11-14 22:32:28 [INFO]: Epoch 086 - training loss: 0.4033, validation loss: 0.0656
2024-11-14 22:32:29 [INFO]: Epoch 087 - training loss: 0.4056, validation loss: 0.0643
2024-11-14 22:32:31 [INFO]: Epoch 088 - training loss: 0.4063, validation loss: 0.0823
2024-11-14 22:32:32 [INFO]: Epoch 089 - training loss: 0.4164, validation loss: 0.0878
2024-11-14 22:32:33 [INFO]: Epoch 090 - training loss: 0.4093, validation loss: 0.0795
2024-11-14 22:32:34 [INFO]: Epoch 091 - training loss: 0.4017, validation loss: 0.0787
2024-11-14 22:32:34 [INFO]: Epoch 092 - training loss: 0.3977, validation loss: 0.0799
2024-11-14 22:32:36 [INFO]: Epoch 093 - training loss: 0.4010, validation loss: 0.0839
2024-11-14 22:32:37 [INFO]: Epoch 094 - training loss: 0.3914, validation loss: 0.0709
2024-11-14 22:32:38 [INFO]: Epoch 095 - training loss: 0.4022, validation loss: 0.0754
2024-11-14 22:32:39 [INFO]: Epoch 096 - training loss: 0.4019, validation loss: 0.0773
2024-11-14 22:32:41 [INFO]: Epoch 097 - training loss: 0.4159, validation loss: 0.0888
2024-11-14 22:32:41 [INFO]: Exceeded the training patience. Terminating the training procedure...
2024-11-14 22:32:41 [INFO]: Finished training. The best model is from epoch#87.
2024-11-14 22:32:41 [INFO]: Saved the model to results_point_rate01/SAITS_Pedestrian/round_4/20241114_T223049/SAITS.pypots
2024-11-14 22:32:41 [INFO]: Successfully saved to results_point_rate01/SAITS_Pedestrian/round_4/imputation.pkl
2024-11-14 22:32:41 [INFO]: Round4 - SAITS on Pedestrian: MAE=0.1424, MSE=0.2521, MRE=0.1873
2024-11-14 22:32:41 [INFO]: Done! Final results:
Averaged SAITS (133,406 params) on Pedestrian: MAE=0.1513 ± 0.006687191788408837, MSE=0.2691 ± 0.020196748134246375, MRE=0.1990 ± 0.008796727782064723, average inference time=0.38
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant