-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathspammerConditions.py
451 lines (428 loc) · 18.1 KB
/
spammerConditions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
__author__ = 'wenjiezhong'
import csv
import os.path
import numpy as np
#Input
worker_cosine_1 = {}
worker_disagreement_2 = {}
worker_consistency_3 = []
consistency_value_3 = []
worker_irrelevant_behaviour_4 = {}
worker_annotation_frequency_5 = {}
avg_novelty_selected = {}
avg_novel_words = {}
more_novel = {}
equally_novel = {}
less_novel = {}
irrelevant = {}
worker_consistency_dict_3 = {}
worker_ID_list = []
#Output
spammer = []
explanation_1_2 = []
explanation_1or2_3or4or5 = []
explanation_4_5 = []
avg_irrelevant_threshold = []
avg_novel_selection = []
explanation_output = []
#Consistency 3
def get_file_path_3(filename):
file_path = os.path.join(os.getcwd(), filename)
return file_path
def read_csv_3(filepath):
with open(filepath, 'rU') as csvfile:
reader = csv.reader(csvfile)
next(reader)
for row in reader:
worker_consistency_3.append(row[0])
consistency_value_3.append(float(row[5]))
path_3 = get_file_path_3('Data/Consistency.csv')
read_csv_3(path_3)
#Irrelevant Behaviour 4 and worker annotation frequency 5
#avg_irrelevant_selected and avg_novelty_selected
def get_file_path_4(filename):
file_path = os.path.join(os.getcwd(), filename)
return file_path
def read_csv_4(filepath):
with open(filepath, 'rU') as csvfile:
reader = csv.reader(csvfile)
next(reader)
for row in reader:
key = row[0]
worker_irrelevant_behaviour_4[key] = float(row[5])
worker_ID_list.append(row[0])
avg_novelty_selected[key] = float(row[6])
worker_annotation_frequency_5[key] = row[7]
worker_cosine_1[key] = float(row[10])
worker_disagreement_2[key] = float(row[11])
try:
avg_novel_words[key] = float(row[8])
except:
avg_novel_words[key] = 0
more_novel[key] = float(row[1])
equally_novel[key] = float(row[2])
less_novel[key] = float(row[3])
irrelevant[key] = float(row[4])
path_4 = get_file_path_4('Data/aggregated_selections.csv')
read_csv_4(path_4)
def write_counts_to_csv(file_name, list):
writer = csv.writer(open(file_name, 'wb'))
writer.writerow(list)
def mean_std_dev_COS():
total_cos = 0.0
list_cos = []
for worker in worker_cosine_1:
total_cos += worker_cosine_1[worker]
list_cos.append(float(worker_cosine_1[worker]))
mean_cos = total_cos/len(worker_cosine_1)
std_dev_cos = np.std(list_cos)
threshold_cos = mean_cos - std_dev_cos
return threshold_cos
def mean_std_dev_DIS():
total_dis = 0.0
list_dis = []
for worker in worker_disagreement_2:
total_dis += worker_disagreement_2[worker]
list_dis.append(float(worker_disagreement_2[worker]))
mean_cos = total_dis/len(worker_disagreement_2)
std_dev_dis = np.std(list_dis)
threshold_dis = mean_cos - std_dev_dis
return threshold_dis
def mean_std_dev_COS2():
total_cos = 0.0
list_cos = []
for worker in worker_cosine_1:
total_cos += worker_cosine_1[worker]
list_cos.append(float(worker_cosine_1[worker]))
mean_cos = total_cos/len(worker_cosine_1)
std_dev_cos = np.std(list_cos)
threshold_cos = mean_cos - std_dev_cos - std_dev_cos
return threshold_cos
def mean_std_dev_DIS2():
total_dis = 0.0
list_dis = []
for worker in worker_disagreement_2:
total_dis += worker_disagreement_2[worker]
list_dis.append(float(worker_disagreement_2[worker]))
mean_cos = total_dis/len(worker_disagreement_2)
std_dev_dis = np.std(list_dis)
threshold_dis = mean_cos - std_dev_dis - std_dev_dis
return threshold_dis
def mean_half_std_dev_COS():
total_cos = 0.0
list_cos = []
for worker in worker_cosine_1:
total_cos += worker_cosine_1[worker]
list_cos.append(float(worker_cosine_1[worker]))
mean_cos = total_cos/len(worker_cosine_1)
std_dev_cos = np.std(list_cos)
threshold_cos = mean_cos - (1.25 * std_dev_cos)
return threshold_cos
def mean_half_std_dev_DIS():
total_dis = 0.0
list_dis = []
for worker in worker_disagreement_2:
total_dis += worker_disagreement_2[worker]
list_dis.append(float(worker_disagreement_2[worker]))
mean_cos = total_dis/len(worker_disagreement_2)
std_dev_dis = np.std(list_dis)
threshold_dis = mean_cos - (0.75 * std_dev_dis)
return threshold_dis
def aggregate_consistency():
j = 0
for worker in worker_consistency_3:
worker_consistency_dict_3[worker] = 0
j += 1
i = 0
for worker in worker_consistency_3:
worker_consistency_dict_3[worker] += consistency_value_3[i]
i += 1
def processV1():
threshold_cos = mean_std_dev_COS()
threshold_dis = mean_std_dev_DIS()
print threshold_cos
print threshold_dis
i = 0
while i < len(worker_ID_list):
if worker_cosine_1[worker_ID_list[i]] < threshold_cos and worker_disagreement_2[worker_ID_list[i]] < threshold_dis:
spammer.append(1)
explanation_1_2.append(1)
explanation_1or2_3or4or5.append(0)
explanation_4_5.append(0)
avg_irrelevant_threshold.append(0)
avg_novel_selection.append(0)
elif worker_cosine_1[worker_ID_list[i]] < threshold_cos or worker_disagreement_2[worker_ID_list[i]] < threshold_dis:
if worker_consistency_dict_3[worker_ID_list[i]] == '1' or worker_irrelevant_behaviour_4[worker_ID_list[i]] > 0.5 or worker_annotation_frequency_5[worker_ID_list[i]] == '1':
spammer.append(1)
explanation_1_2.append(0)
explanation_1or2_3or4or5.append(1)
explanation_4_5.append(0)
avg_irrelevant_threshold.append(0)
avg_novel_selection.append(0)
else:
spammer.append(0)
explanation_1_2.append(0)
explanation_1or2_3or4or5.append(0)
explanation_4_5.append(0)
avg_irrelevant_threshold.append(0)
avg_novel_selection.append(0)
elif worker_irrelevant_behaviour_4[worker_ID_list[i]] > 0.5 and worker_annotation_frequency_5[worker_ID_list[i]] == '1':
spammer.append(1)
explanation_1_2.append(0)
explanation_1or2_3or4or5.append(0)
explanation_4_5.append(1)
avg_irrelevant_threshold.append(0)
avg_novel_selection.append(0)
elif worker_irrelevant_behaviour_4[worker_ID_list[i]] > 0.5:
spammer.append(1)
explanation_1_2.append(0)
explanation_1or2_3or4or5.append(0)
explanation_4_5.append(0)
avg_irrelevant_threshold.append(1)
avg_novel_selection.append(0)
elif avg_novelty_selected[worker_ID_list[i]] > 0.75:
spammer.append(1)
explanation_1_2.append(0)
explanation_1or2_3or4or5.append(0)
explanation_4_5.append(0)
avg_irrelevant_threshold.append(0)
avg_novel_selection.append(1)
else:
spammer.append(0)
explanation_1_2.append(0)
explanation_1or2_3or4or5.append(0)
explanation_4_5.append(0)
avg_irrelevant_threshold.append(0)
avg_novel_selection.append(0)
i += 1
create_explanation1()
def processV2():
threshold_cos = mean_std_dev_COS()
threshold_dis = mean_std_dev_DIS()
i = 0
while i < len(worker_ID_list):
if worker_cosine_1[worker_ID_list[i]] < threshold_cos and worker_disagreement_2[worker_ID_list[i]] < threshold_dis:
spammer.append(1)
explanation_1_2.append(1)
explanation_1or2_3or4or5.append(0)
explanation_4_5.append(0)
avg_irrelevant_threshold.append(0)
avg_novel_selection.append(0)
elif worker_cosine_1[worker_ID_list[i]] < threshold_cos or worker_disagreement_2[worker_ID_list[i]] < threshold_dis:
if worker_consistency_dict_3[worker_ID_list[i]] == '1' or worker_irrelevant_behaviour_4[worker_ID_list[i]] > 0.5 or worker_annotation_frequency_5[worker_ID_list[i]] == '1':
spammer.append(1)
explanation_1_2.append(0)
explanation_1or2_3or4or5.append(1)
explanation_4_5.append(0)
avg_irrelevant_threshold.append(0)
avg_novel_selection.append(0)
else:
spammer.append(0)
explanation_1_2.append(0)
explanation_1or2_3or4or5.append(0)
explanation_4_5.append(0)
avg_irrelevant_threshold.append(0)
avg_novel_selection.append(0)
elif worker_irrelevant_behaviour_4[worker_ID_list[i]] > 0.5 and worker_annotation_frequency_5[worker_ID_list[i]] == '1':
spammer.append(1)
explanation_1_2.append(0)
explanation_1or2_3or4or5.append(0)
explanation_4_5.append(1)
avg_irrelevant_threshold.append(0)
avg_novel_selection.append(0)
elif worker_irrelevant_behaviour_4[worker_ID_list[i]] > 0.5 and avg_novelty_selected[worker_ID_list[i]] > 0.75:
spammer.append(1)
explanation_1_2.append(0)
explanation_1or2_3or4or5.append(0)
explanation_4_5.append(0)
avg_irrelevant_threshold.append(1)
avg_novel_selection.append(0)
else:
spammer.append(0)
explanation_1_2.append(0)
explanation_1or2_3or4or5.append(0)
explanation_4_5.append(0)
avg_irrelevant_threshold.append(0)
avg_novel_selection.append(0)
i += 1
create_explanation2()
def processV3():
threshold_cos = mean_std_dev_COS()
threshold_dis = mean_std_dev_DIS()
i = 0
while i < len(worker_ID_list):
if worker_cosine_1[worker_ID_list[i]] < threshold_cos and worker_disagreement_2[worker_ID_list[i]] < threshold_dis:
spammer.append(1)
explanation_1_2.append(1)
explanation_1or2_3or4or5.append(0)
explanation_4_5.append(0)
avg_irrelevant_threshold.append(0)
avg_novel_selection.append(0)
elif worker_cosine_1[worker_ID_list[i]] < threshold_cos or worker_disagreement_2[worker_ID_list[i]] < threshold_dis:
if worker_consistency_dict_3[worker_ID_list[i]] == '1' or worker_irrelevant_behaviour_4[worker_ID_list[i]] > 0.5 or worker_annotation_frequency_5[worker_ID_list[i]] == '1':
spammer.append(1)
explanation_1_2.append(0)
explanation_1or2_3or4or5.append(1)
explanation_4_5.append(0)
avg_irrelevant_threshold.append(0)
avg_novel_selection.append(0)
else:
spammer.append(0)
explanation_1_2.append(0)
explanation_1or2_3or4or5.append(0)
explanation_4_5.append(0)
avg_irrelevant_threshold.append(0)
avg_novel_selection.append(0)
elif worker_irrelevant_behaviour_4[worker_ID_list[i]] > 0.5 and worker_annotation_frequency_5[worker_ID_list[i]] == '1':
spammer.append(1)
explanation_1_2.append(0)
explanation_1or2_3or4or5.append(0)
explanation_4_5.append(1)
avg_irrelevant_threshold.append(0)
avg_novel_selection.append(0)
elif worker_irrelevant_behaviour_4[worker_ID_list[i]] > 0.5 and avg_novelty_selected[worker_ID_list[i]] > 0.75:
spammer.append(1)
explanation_1_2.append(0)
explanation_1or2_3or4or5.append(0)
explanation_4_5.append(0)
avg_irrelevant_threshold.append(1)
avg_novel_selection.append(0)
elif worker_annotation_frequency_5[worker_ID_list[i]] == '1':
spammer.append(1)
explanation_1_2.append(0)
explanation_1or2_3or4or5.append(0)
explanation_4_5.append(0)
avg_irrelevant_threshold.append(0)
avg_novel_selection.append(1)
else:
spammer.append(0)
explanation_1_2.append(0)
explanation_1or2_3or4or5.append(0)
explanation_4_5.append(0)
avg_irrelevant_threshold.append(0)
avg_novel_selection.append(0)
i += 1
create_explanation1()
def processV4():
threshold_cos = mean_std_dev_COS2()
threshold_dis = mean_std_dev_DIS2()
i = 0
while i < len(worker_ID_list):
if worker_cosine_1[worker_ID_list[i]] < threshold_cos and worker_disagreement_2[worker_ID_list[i]] < threshold_dis:
spammer.append(1)
explanation_1_2.append(1)
explanation_1or2_3or4or5.append(0)
explanation_4_5.append(0)
avg_irrelevant_threshold.append(0)
avg_novel_selection.append(0)
elif worker_cosine_1[worker_ID_list[i]] < threshold_cos or worker_disagreement_2[worker_ID_list[i]] < threshold_dis:
if worker_consistency_dict_3[worker_ID_list[i]] == '1' or worker_irrelevant_behaviour_4[worker_ID_list[i]] > 0.5 or worker_annotation_frequency_5[worker_ID_list[i]] == '1':
spammer.append(1)
explanation_1_2.append(0)
explanation_1or2_3or4or5.append(1)
explanation_4_5.append(0)
avg_irrelevant_threshold.append(0)
avg_novel_selection.append(0)
else:
spammer.append(0)
explanation_1_2.append(0)
explanation_1or2_3or4or5.append(0)
explanation_4_5.append(0)
avg_irrelevant_threshold.append(0)
avg_novel_selection.append(0)
elif worker_irrelevant_behaviour_4[worker_ID_list[i]] > 0.5 and worker_annotation_frequency_5[worker_ID_list[i]] == '1':
spammer.append(1)
explanation_1_2.append(0)
explanation_1or2_3or4or5.append(0)
explanation_4_5.append(1)
avg_irrelevant_threshold.append(0)
avg_novel_selection.append(0)
elif worker_irrelevant_behaviour_4[worker_ID_list[i]] > 0.5 and avg_novelty_selected[worker_ID_list[i]] > 0.75:
spammer.append(1)
explanation_1_2.append(0)
explanation_1or2_3or4or5.append(0)
explanation_4_5.append(0)
avg_irrelevant_threshold.append(1)
avg_novel_selection.append(0)
else:
spammer.append(0)
explanation_1_2.append(0)
explanation_1or2_3or4or5.append(0)
explanation_4_5.append(0)
avg_irrelevant_threshold.append(0)
avg_novel_selection.append(0)
i += 1
create_explanation2()
def processV6():
threshold_cos = mean_half_std_dev_COS()
threshold_dis = mean_half_std_dev_DIS()
print threshold_cos
print threshold_dis
i = 0
while i < len(worker_ID_list):
if worker_cosine_1[worker_ID_list[i]] < threshold_cos and worker_disagreement_2[worker_ID_list[i]] < threshold_dis:
spammer.append(1)
explanation_1_2.append(1)
explanation_1or2_3or4or5.append(0)
explanation_4_5.append(0)
avg_irrelevant_threshold.append(0)
avg_novel_selection.append(0)
elif worker_cosine_1[worker_ID_list[i]] < threshold_cos or worker_disagreement_2[worker_ID_list[i]] < threshold_dis:
if worker_consistency_dict_3[worker_ID_list[i]] == '1' or worker_irrelevant_behaviour_4[worker_ID_list[i]] > 0.5 \
or worker_annotation_frequency_5[worker_ID_list[i]] == '1' or avg_novel_words[worker_ID_list[i]] < 2:
spammer.append(1)
explanation_1_2.append(0)
explanation_1or2_3or4or5.append(1)
explanation_4_5.append(0)
avg_irrelevant_threshold.append(0)
avg_novel_selection.append(0)
else:
spammer.append(0)
explanation_1_2.append(0)
explanation_1or2_3or4or5.append(0)
explanation_4_5.append(0)
avg_irrelevant_threshold.append(0)
avg_novel_selection.append(0)
elif worker_irrelevant_behaviour_4[worker_ID_list[i]] > 0.5 and worker_annotation_frequency_5[worker_ID_list[i]] == '1':
spammer.append(1)
explanation_1_2.append(0)
explanation_1or2_3or4or5.append(0)
explanation_4_5.append(1)
avg_irrelevant_threshold.append(0)
avg_novel_selection.append(0)
elif worker_annotation_frequency_5[worker_ID_list[i]] == '1' and avg_novel_words[worker_ID_list[i]] < 1.2 and \
(more_novel[worker_ID_list[i]]+equally_novel[worker_ID_list[i]]+less_novel[worker_ID_list[i]]+irrelevant[worker_ID_list[i]]) > 7:
spammer.append(1)
explanation_1_2.append(0)
explanation_1or2_3or4or5.append(0)
explanation_4_5.append(0)
avg_irrelevant_threshold.append(0)
avg_novel_selection.append(1)
else:
spammer.append(0)
explanation_1_2.append(0)
explanation_1or2_3or4or5.append(0)
explanation_4_5.append(0)
avg_irrelevant_threshold.append(0)
avg_novel_selection.append(0)
i += 1
create_explanation1()
def create_explanation1():
i = 0
explanation_output.append('1and2,1or2_3or4or5,4and5,avg_irr50,avg_nov75')
while i < len(spammer):
explanation_output.append('%s,%s,%s,%s,%s' %(explanation_1_2[i],explanation_1or2_3or4or5[i]
,explanation_4_5[i],avg_irrelevant_threshold[i]
,avg_novel_selection[i]))
i += 1
def create_explanation2():
i = 0
explanation_output.append('1and2,1or2_3or4or5,4and5,avg_irr50')
while i < len(spammer):
explanation_output.append('%s,%s,%s,%s' %(explanation_1_2[i],explanation_1or2_3or4or5[i]
,explanation_4_5[i],avg_irrelevant_threshold[i]))
i += 1
aggregate_consistency()
processV6()
write_counts_to_csv('spammer.txt', spammer)
write_counts_to_csv('explanation.txt', explanation_output)