-
Notifications
You must be signed in to change notification settings - Fork 0
/
main.py
100 lines (78 loc) · 3.12 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
import argparse
import os
import torch
from model.wgan_v2 import WGAN_GP_v2
def str2bool(v):
if isinstance(v, bool):
return v
if v.lower() in ('yes', 'true', 't', 'y', '1'):
return True
elif v.lower() in ('no', 'false', 'f', 'n', '0'):
return False
else:
raise argparse.ArgumentTypeError('Boolean value expected.')
"""parsing and configuration"""
def parse_args():
desc = "Pytorch implementation of GAN collections"
parser = argparse.ArgumentParser(description=desc)
parser.add_argument('--is_train', type=str2bool, default=True, help='train the net or load the net')
parser.add_argument('--epoch', type=int, default=50, help='The number of epochs to run')
parser.add_argument('--batch_size', type=int, default=8, help='The size of batch')
parser.add_argument('--input_size', type=int, default=28, help='The size of input image')
parser.add_argument('--save_dir', type=str, default='models',
help='Directory name to save the model')
parser.add_argument('--model_name', type=str, default='WGAN', help='name your model')
parser.add_argument('--result_dir', type=str, default='results', help='Directory name to save the generated images')
parser.add_argument('--log_dir', type=str, default='logs', help='Directory name to save training logs')
parser.add_argument('--data_dir', type=str, default='./data/GOOG_BIG.csv', help='Directory of data files')
parser.add_argument('--col_name', type=str, default='Open', help='Name of columns to be generated')
parser.add_argument('--lrG', type=float, default=0.0002)
parser.add_argument('--lrD', type=float, default=0.0002)
parser.add_argument('--beta1', type=float, default=0.5)
parser.add_argument('--beta2', type=float, default=0.999)
parser.add_argument('--gpu_mode', type=str2bool, default=True)
parser.add_argument('--benchmark_mode', type=str2bool, default=True)
parser.add_argument('--sample_dir', type=str, default='./data/sample/')
return check_args(parser.parse_args())
"""checking arguments"""
def check_args(args):
# --save_dir
if not os.path.exists(args.save_dir):
os.makedirs(args.save_dir)
# --result_dir
if not os.path.exists(args.result_dir):
os.makedirs(args.result_dir)
# --result_dir
if not os.path.exists(args.log_dir):
os.makedirs(args.log_dir)
# --epoch
try:
assert args.epoch >= 1
except:
print('number of epochs must be larger than or equal to one')
# --batch_size
try:
assert args.batch_size >= 1
except:
print('batch size must be larger than or equal to one')
return args
"""main"""
def main():
# parse arguments
args = parse_args()
if args is None:
exit()
if args.benchmark_mode:
torch.backends.cudnn.benchmark = True
# declare instance for GAN
gan = WGAN_GP_v2(args)
if args.is_train:
gan.train()
print(" [*] Training finished!")
else:
gan.load()
# visualize learned generator
gan.generate()
print(" [*] Testing finished!")
if __name__ == '__main__':
main()