-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathxcorr.py
504 lines (461 loc) · 18.4 KB
/
xcorr.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
from astropy.convolution import convolve, Gaussian1DKernel
import matplotlib.pyplot as plt
from tqdm import tqdm
from typing import Sequence
from utils import *
curr_pos = 0
rcParams['keymap.back'].remove('left')
rcParams['keymap.forward'].remove('right')
class Xcorr(Quantiser):
"""
The programme for cross correlation
"""
def __init__(self, spec: Spectrum1D, labline: Union[float, u.Quantity],
spec_index: str, ax: plt.Axes = None, **kwargs):
"""
When initialising the cross correlation programme
Parameters
----------
spec
The spectrum of the object
labline
The wavelength of the spectral index
spec_index
The name of the spectral index
ax
The axis being plotted on
kwargs
Extra fitting parameters, see:
wunit, funit, rvunit, templatedir, waverms, rv, rvstep, teff, grav, met, smoothlevel, use, c1, c4
"""
self.kwargs = kwargs
wunit = kwargs.get('wunit', u.AA) # the unit for wavelengths
funit = kwargs.get('funit', u.erg / u.cm ** 2 / wunit / u.s) # flux unit
rvunit = kwargs.get('rvunit', u.km / u.s) # RV unit
self.spec_index = spec_index
super().__init__(wunit, funit, rvunit, spec)
self.templatedir = kwargs.get('templatedir', 'bt-settl-cifist/useful/') # the template directory
self.templatedf = self.get_template_converter()
self.spec = copy(spec)
self.sub_spec = copy(self.spec)
self.sub_speccorr = copy(self.sub_spec)
self.ax = ax
self.labline = self.__assertwavelength__(labline)
if self.labline > (2 * u.um): # NIST values greater than 2 microns are in vacuum, need air
self.labline = vac_to_air(self.labline, method='Edlen1953')
self.waverms = self.__assertwavelength__(kwargs.get('waverms', 0)) # wavelength rms
self.rv = self.__assertrv__(kwargs.get('rv', 0)) # RV
self.rverr = self.__assertrv__(5)
self.rvstep = self.__assertrv__(kwargs.get('rvstep', 10)) # RV step size
self.teffunit = u.K
self.gravunit = u.dex
self.metunit = u.dex
self.teff = kwargs.get('teff', 2000) * self.teffunit # teff
self.grav = kwargs.get('grav', 5.) * self.gravunit # gravity
self.met = kwargs.get('met', 0.) * self.metunit # metallicity
self.templatefname = ''
self.temp_spec = copy(spec)
self.sub_temp_spec = copy(self.temp_spec)
self.sub_temp_speccorr = copy(self.sub_temp_spec)
self.smoothlevel = kwargs.get('smoothlevel', 1) # smoothing level
self.gottemplate = False
self.tempchanged = True
self.templates_query()
if not self.gottemplate:
raise IndexError('Failed to initialise with default teff/ grav/ met')
self.contfound = False
self.profilefound = False
self.use = kwargs.get('use', True) # whether to use this spectral line or not
self.conttemplate = None
self.c1 = kwargs.get('c1', self.spec.spectral_axis.min()) # the left most spectral boundary
self.c4 = kwargs.get('c4', self.spec.spectral_axis.max()) # the right most spectral boundary
self.linewindow = self.getlinewindow()
self.contwindow = self.getcontwindow()
self.iscut = False
return
def reset(self):
"""
Resetting the data
"""
self.__init__(copy(self.spec), self.labline, self.spec_index, self.ax, **self.kwargs)
def __assertteff__(self, value: Optional[Union[float, u.Quantity]]) -> Optional[u.Quantity]:
if isinstance(value, float) or isinstance(value, int):
value *= self.teffunit
elif not self.__assertquantity__(value, True):
pass
return value
def __assertgrav__(self, value: Optional[Union[float, u.Quantity]]) -> Optional[u.Quantity]:
if isinstance(value, float) or isinstance(value, int):
value *= self.gravunit
elif not self.__assertquantity__(value, True):
pass
return value
def __assertmet__(self, value: Optional[Union[float, u.Quantity]]) -> Optional[u.Quantity]:
if isinstance(value, float) or isinstance(value, int):
value *= self.metunit
elif not self.__assertquantity__(value, True):
pass
return value
@property
def teffunit(self):
return self._teffunit
@teffunit.setter
def teffunit(self, value):
if not self.__assertquantity__(value, False):
raise AttributeError('teffunit must be an astropy unit')
self._teffunit = value
@property
def gravunit(self):
return self._gravunit
@gravunit.setter
def gravunit(self, value):
if not self.__assertquantity__(value, False):
raise AttributeError('gravunit must be an astropy unit')
self._gravunit = value
@property
def metunit(self):
return self._metunit
@metunit.setter
def metunit(self, value):
if not self.__assertquantity__(value, False):
raise AttributeError('metunit must be an astropy unit')
self._metunit = value
@property
def rvstep(self) -> u.Quantity:
return self._rvstep
@rvstep.setter
def rvstep(self, value):
self._rvstep = self.__assertrv__(value)
@property
def teff(self) -> u.Quantity:
return self._teff
@teff.setter
def teff(self, value):
self._teff = self.__assertteff__(value)
@property
def grav(self) -> u.Quantity:
return self._grav
@grav.setter
def grav(self, value):
self._grav = self.__assertgrav__(value)
@property
def met(self) -> u.Quantity:
return self._met
@met.setter
def met(self, value):
self._met = self.__assertmet__(value)
@property
def conttemplate(self) -> Optional[Fittable1DModel]:
return self._conttemplate
@conttemplate.setter
def conttemplate(self, value):
self._conttemplate = self.__assertmodel__(value)
def __str__(self):
s = """
Interactive plotting routine help:
? - Prints this help menu
q - Quit routine (lines are rejected by default)
r - Resets back to default
1 - Selects left hand edge of spectra; anything further left is cut
2 - Selects right hand edge of spectra; anything further right is cut
3 - Decrease smoothing level of template by 1 sigma
4 - Increase smoothing level of template by 1 sigma
5 - Decrease metallicity by 0.5
6 - Increase metallicity by 0.5
7 - Change RV in steps of 5 km/s
8 - Change RV in steps of 10 km/s
9 - Change RV in steps of 100 km/s
right - Increase RV
left - Decrease RV
up - Increase Teff by 100K
down - Decrease Teff by 100K
+ - Increase log g by 0.5
- - Decrease log g by 0.5
y - Accept this line fitting
n - Reject this line fitting
b - Go back to previous line
"""
return s
@staticmethod
def get_template_converter() -> pd.DataFrame:
"""
Converting the .json of templates into a dataframe
Returns
-------
df
The dataframe of the template lookup
"""
jdname = 'template_lookup.json'
if not os.path.exists(jdname):
raise FileNotFoundError(f'Need lookup file: {jdname}')
with open(jdname, 'r') as jd:
d = json.load(jd)
df = pd.DataFrame.from_dict(d, 'index', columns=('teff', 'logg', 'met'))
return df
def templates_query(self):
"""
Querying the templates with a given teff, gravity and metallicity
"""
if self.tempchanged:
try:
fname = self.templatedf.loc[(self.templatedf.teff == self.teff.value) &
(self.templatedf.logg == self.grav.value) &
(self.templatedf.met == self.met.value)].iloc[0].name
fname = self.templatedir + fname
wave = copy(self.spec.spectral_axis)
kwargs = dict(wunit=u.AA)
kwargs['wavearr'] = wave.to(u.AA).value
temp_spec = freader(fname, **kwargs)
temp_spec = Spectrum1D(temp_spec.flux, temp_spec.spectral_axis.to(self.wunit),
uncertainty=temp_spec.uncertainty)
temp_spec = self.cutspec(temp_spec)
except (IndexError, FileNotFoundError, OSError):
self.gottemplate = False
return
self.templatefname = fname
self.temp_spec = temp_spec
self.gottemplate = True
return
def shiftsmooth(self, temp_spec: Spectrum1D, wavearr: np.ndarray) -> Spectrum1D:
"""
Shifting and smoothing the spectrum
Parameters
----------
temp_spec
The input spectrum
wavearr
Wavelength array to be interpolated to
Returns
-------
temp_spec
The shifted input spectrum
"""
temp_spec.radial_velocity = self.rv
wavetemp, fluxtemp, fluxtemperr = spec_unpack(temp_spec)
fluxsmooth = convolve(fluxtemp, Gaussian1DKernel(self.smoothlevel))
fluxsmooth = np.interp(wavearr, wavetemp, fluxsmooth)
fluxerrsmooth = np.interp(wavearr, wavetemp, fluxtemperr)
temp_spec = Spectrum1D(fluxsmooth * self.funit, wavearr * self.wunit,
uncertainty=StdDevUncertainty(fluxerrsmooth, unit=self.funit))
self.rverr = self.rvstep / 2 + inv_rv_calc(self.waverms.to(self.wunit).value, self.labline.value) * self.rvunit
return temp_spec
def __updatewindows__(self):
"""
Cutting the spectrum
"""
super().__updatewindows__()
self.sub_temp_spec = self.cutspec(self.temp_spec)
if self.c1 == self.spec.spectral_axis.min() or self.c4 == self.spec.spectral_axis.max():
self.iscut = False
else:
self.iscut = True
def normalise(self):
"""
Normalising the spectra
"""
wave, flux, fluxerr = spec_unpack(self.sub_spec)
wavetemp, fluxtemp, fluxtemperr = spec_unpack(self.sub_temp_spec)
wave, flux, fluxerr = normaliser(wave, flux, fluxerr, xmin=self.c1.value, xmax=self.c4.value)
wavetemp, fluxtemp, fluxtemperr = normaliser(wavetemp, fluxtemp, fluxtemperr,
xmin=self.c1.value, xmax=self.c4.value)
self.sub_speccorr = Spectrum1D(flux * self.funit, wave * self.wunit,
uncertainty=StdDevUncertainty(fluxerr, unit=self.funit))
self.sub_temp_speccorr = Spectrum1D(fluxtemp * self.funit, wavetemp * self.wunit,
uncertainty=StdDevUncertainty(fluxtemperr, unit=self.funit))
def __fitready__(self):
"""
A check being made before any plotting
"""
try:
self.templates_query()
if not self.gottemplate:
raise ValueError('Out of template range')
self.__updatewindows__()
self.sub_temp_spec = self.shiftsmooth(self.sub_temp_spec, self.sub_spec.wavelength.to(self.wunit).value)
self.normalise()
except Exception as e:
print(f'Fit failed: {repr(e)}')
if self.ax is not None:
self.ax.text(0.5, 0.5, f'Fit failed: {repr(e)}', transform=self.ax.transAxes,
horizontalalignment='center')
self.rescale = False
self.gottemplate = False
return
self.gottemplate = True
def plotter(self):
"""
Plotting routine
"""
self.__fitready__()
handles, labels = [], []
if self.iscut:
spec = self.sub_speccorr
tempspec = self.sub_temp_speccorr
else:
spec = self.spec
tempspec = self.temp_spec
wave, flux, fluxerr = spec_unpack(spec)
wavetemp, fluxtemp = spec_unpack(tempspec)[:2]
if self.rescale:
xroundpoint, yroundpoint = 5, 1
self.ax.set_ylim(yroundpoint * np.floor(np.min(flux) / yroundpoint),
yroundpoint * np.ceil(np.max(flux) / yroundpoint))
self.ax.set_xlim(self.c1.value, self.c4.value)
self.rescale = False
if self.iscut:
ebar = self.ax.errorbar(wave, flux, yerr=fluxerr, marker='s', lw=0, elinewidth=1.5, c='black',
ms=4, mfc='white', mec='black', barsabove=True)
fitx, fity, fityerr = self.poly_cutter(wave, flux, fluxerr, 5)
splineplot = self.ax.plot(fitx, fity, 'b-')
handles.extend([ebar, splineplot[0]])
labels.extend(['Data Points', 'Data Spline'])
rmsdiqr, sig = rmsdiqr_check(flux, fluxtemp, self.best_rmsdiqr)
if sig:
self.best_rmsdiqr = rmsdiqr
sigcol = 'green'
else:
sigcol = 'red'
self.ax.text(0.05, 0.95, f'RMSDIQR = {rmsdiqr:.2f}', transform=self.ax.transAxes, zorder=6,
verticalalignment='top', c=sigcol, bbox=dict(facecolor='white', alpha=1.0, edgecolor='none'))
else:
p = self.ax.plot(wave, flux, 'k')
handles.extend(p)
labels.append('Data')
self.ax.axvline(self.labline.value, color='grey', ls='--')
self.ax.axvline(self.labline.value + inv_rv_calc(self.rv.value, self.labline.value),
color='black')
spectitle = self.spec_index.capitalize().replace('1', '\,\\textsc{i}')
self.ax.set_title('\t' * 2 + f'{spectitle}: RV={self.rv.value:.1f}\,km\,s$^{{-1}}$\n'
f'T={self.teff.value}\,K, $\log g$={self.grav.value}\,dex, '
f'$\\vert$Fe/H$\\vert$={self.met.value}\,dex')
if not self.use:
return
ls = '-'
templateplot = self.ax.plot(wavetemp, fluxtemp, c='orange', ls=ls)
handles.extend(templateplot)
labels.append('Template')
leg = self.ax.legend(handles, labels)
leg.set_draggable(True)
def manual_xcorr_fit(spec: Spectrum1D, spec_indices: Dict[str, float], **kwargs) -> Tuple[List[str], Sequence[Xcorr]]:
"""
Manually fitting the cross correlation for each object
Parameters
----------
spec
The spectrum of the object
spec_indices
The dictionary of indices
kwargs
The fit parameters passed on to the fitting
Returns
-------
useset, objlist
The list of lines used
The list of all of the fits
"""
def keypress(e):
global curr_pos
obj = objlist[curr_pos]
if e.key == 'y':
goodinds[curr_pos] = True
curr_pos += 1
if curr_pos < len(useset):
objkwargs = obj.kwargs
objkwargs['teff'] = copy(obj.teff.value)
objkwargs['grav'] = copy(obj.grav.value)
objkwargs['met'] = copy(obj.met.value)
objkwargs['rv'] = copy(obj.rv.value)
objkwargs['rvstep'] = copy(obj.rvstep.value)
objlist[curr_pos].kwargs = objkwargs
objlist[curr_pos].reset()
elif e.key == 'n':
goodinds[curr_pos] = False
curr_pos += 1
if curr_pos < len(useset):
objkwargs = obj.kwargs
objkwargs['teff'] = copy(obj.teff.value)
objkwargs['grav'] = copy(obj.grav.value)
objkwargs['met'] = copy(obj.met.value)
objkwargs['rv'] = copy(obj.rv.value)
objkwargs['rvstep'] = copy(obj.rvstep.value)
objlist[curr_pos].kwargs = objkwargs
objlist[curr_pos].reset()
elif e.key == 'b':
curr_pos -= 1 if curr_pos - 1 >= 0 else curr_pos
elif e.key == 'r':
obj.reset()
elif e.key == '1':
obj.c1 = e.xdata
obj.rescale = True
elif e.key == '2':
obj.c4 = e.xdata
obj.rescale = True
elif e.key == '3':
obj.smoothlevel = obj.smoothlevel - 1 or 1
elif e.key == '4':
obj.smoothlevel += 1
elif e.key == '5':
obj.met -= 0.5 * u.dex
elif e.key == '6':
obj.met += 0.5 * u.dex
elif e.key == '7':
obj.rvstep = 5 * rvunit
elif e.key == '8':
obj.rvstep = 10 * rvunit
elif e.key == '9':
obj.rvstep = 100 * rvunit
elif e.key == '-':
obj.grav -= 0.5 * u.dex
elif e.key in ('+', '='):
obj.grav += 0.5 * u.dex
elif e.key == 'up':
obj.teff += 100 * u.K
elif e.key == 'down':
obj.teff -= 100 * u.K
elif e.key == 'right':
obj.rv += obj.rvstep
elif e.key == 'left':
obj.rv -= obj.rvstep
elif e.key == '?':
print(obj)
elif e.key == 'q':
plt.close(2)
return
else:
return
if curr_pos == len(useset):
plt.close(2)
return
if e.key in ('up', 'down', '-', '+', '=', '5', '6'):
obj.tempchanged = True
else:
obj.tempchanged = False
for artist in plt.gca().lines + plt.gca().collections + plt.gca().texts:
artist.remove()
if e.key != 'q':
try:
objlist[curr_pos].plotter()
except Exception as e:
print(e)
fig.canvas.draw()
return
global curr_pos
curr_pos = 0
rvunit = kwargs.get('rvunit', u.km / u.s)
fig, ax = plt.subplots(figsize=(8, 5), num=2)
fig: plt.Figure = fig
ax: plt.Axes = ax
fig.canvas.mpl_connect('key_press_event', keypress)
useset = np.fromiter(spec_indices.keys(), dtype='<U8')
ax.set_xlabel(f'Wavelength\,[{spec.spectral_axis.unit.to_string()}]')
ax.set_ylabel('Normalised Flux [$F_{\lambda}$]')
curr_pos = 0
goodinds = np.zeros(len(useset), dtype=bool)
objlist = np.empty_like(goodinds, dtype=object)
for i, (spec_index, labline) in tqdm(enumerate(spec_indices.items()), total=len(spec_indices),
desc='Prepping Cross Correlation', leave=False):
objlist[i] = Xcorr(copy(spec), labline, spec_index, ax, **kwargs)
objlist[0].plotter()
plt.show()
outset: list = useset[goodinds].tolist()
return outset, objlist